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PREFACE TO THE ENGLISH EDITION 

1 wish to express my gratitude to my two translators, Professor William H. 
Meyer of the University of Chicago and Professor John Wilkinson of 
Wesleyan University, who between them provided the basic translation, 
revised it, made many improvements in wording and arrangement, and 
supplicd additional explanations The translation owes its existence to 
their generous devotion of time and interest. Translating a technical book 
requires a good knowledge of the subject mattcr in addition to linguistic 
abilities and sensitivities. In my opinion, the translators happily combined 
these abilities and performed an excellent job. 

Except for numerous minor corrections and changes made cither by me 
or by the translators, the translation follows in general the German original 
In the following places, however, | made major changes or additions. 
In 20 ff, the explanations of the terms ‘language’, ‘syntactical system', and 
‘semantical system’ have been changed and made more exact. A new 
section, 26b, has been added on the formalization of syntax and semantics. 
To the first explication of lincar order in 31, represented by Russell’s concept 
of ascrics (D5), | have now added a second explication, represented by the 
concept of a simple order (D8, based on D6 and D7). This second concept 
has certain advantages and has recently seen increased usc. The concept 
of a simple order is employed in some of the definitions of 38, In 42a, the 
distinction between the basic language L and the axiomatic language L’ is 
new. In 42b, the distinction between interpretations and models has been 
made sharper, There arc several changes in the axiom system of set 
theory (43) In 43a, the axiom of regularity (A9) has been added, The 
original 43b is omitted (it gave a second version of the system, with cight 
primitives, among them seven functors). The new 43b is an expansion of a 
pait of the original 43a, with an altered form of the axiom of restriction 
(A10), Also, 43c is newly added; here another version of the axiom system 
is described, which uscs only individual variables. In the axiom system of 
neighborhoods (46), 46b contains a new second version; and the definitions 
in 46c arc now based on this simpler version. 

The bibliography (56) has been brought up to date, In chapters A, B, 
and C, many new exercises have been added; | wish to thank my student, 
David B, Kaplan, for his efficient help in this connection, 

For the most part, the terminology in this English edition is based on 
terms used by me in classes and in recent publications, Suggestions for 
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some other terms I owe to the translators and other colleagues. I went over 
the whole translation carcfully and bear the sole responsibility for the 
accuracy of the content. 

Rupo.r CARNAP 
University of California 

at Los Angeles 

May 1957 



PREFACE TO THE GERMAN EDITION 

During the past century logic has assumed an entircly new form, that of 

symbolic logic (or mathematical logic, or logistic) Thc usc of symbols is, 

of course, the most striking feature of the new logic Nevertheless, its 

essential characteristics lie in other directions: precision of formulation, 
greatly extended scope (cspccially in the theory of relations and of high-level 
concepts), manifold applications of its ncw mcthods. In conscquence the 
last decades have scen an ever-increasing interest in symbolic logic, notably 
among mathematicians and philosophers, but also among those working 
in quite specialized ficlds who give attention to the analysis of the concepts 
of their disciplines. 

Today, and particularly in the United Statcs, symbolic logic is a recognized 
subject for teaching and research. The majority of American scholars who 
write on cpistemology, analysis of language, scicntific method, foundations 
of mathematics, axiomatic method, and the likc, regard symbolic logic as 
an indispensable tool, 

It is my hope that this book will reinforce, among German-speaking 
peoples, the gencral intercst in symbolic logic. 
What chicfly differentiates the present book from other logic texts 

(mostly in English) may be summarized under the following heads. In 
addition to the clementary portions of the thcory, whosc treatment is 
customary in most books, there is also a detailed presentation of the morc 
advanced topics (especially the logic of rclations) required for the applica- 
tion of logic Further, the entire second part of the present book is given 
over to the application of symbolic logic. In this second part we first 
explain the construction of various language forms that must be con- 
sidered in the application of logic; thereafter, we give in symbolic form 
axiom systems from different ficlds. Finally, in accordance with modern 
views, the present book outlines the theories of formal language systems 
(logical syntax) and interpreted language systems (semantics), 

It may be thought that these last thcorics transccnd the natural limits of 
an introductory text. However, I consider it important for anyone who 
would make the new symbolic mcthods his own that he Icarn from the 
very beginning to think from the point of vicw of the construction of 
deductive systems: in so doing, he gains for himself the insight that 
symbolism is a language conforming to cxact rules whose usc can sharpen 
the forms of his own thinking. It is this deliberate considcration of logical 
syntax and scmantics which—apart from essentially greater length— 
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viii PREFACE TO THE GERMAN EDITION 

mainly distinguishes the present book from my former Abriss der Logistik 
(Wien 1929, 114 p), now out of print and in many respects out of date 
because of rapid devclopments in the field. 

The prescnt book can be used as the text of a two-semester course in 
symbolic logic. The first semester, the introductory part of the course, 
could eg. be based on Chapter A together with several illustrative applica- 
tions drawn from Part II (sce my explanations in 42e), Thc second scmestcr 
of the course could center chiefly on Chapter C supplemented by other 
applications from Part II; and to these matters can be added (to a degree 
desired by the instructor) considerations of syntactical and semantical thcory, 
based cither on the sketch provided in Chapter B or on the fuller presenta- 
tions found in other books. Of course, the whole ficld of modcrn logic— 
including the theory of formal and interpreted language systems—is so 
extensive that two onc-year courses are far more appropriate to it. 

RUDOLF CARNAP 
Institute for Advanced Study, 

Princeton, N.J. 

January 1954 
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PART ONE 

SYSTEM OF SYMBOLIC LOGIC 

Chapter A 

The simple language A 

1, THE PROBLEM OF SYMBOLIC LOGIC 

1a, The ‘purpose of symbolic language. Symbolic logic (also called 
mathematical logic or logistic) is the modern form of logic developed in the 
last hundred years. This book presents a system of symbolic logic, together 
with illustrations of its use. Such a system is not a theory (i (i.e. a system of 
assertions about objects), but a /anguage (i.c, a system of signs and of rules 
for their use). We will so construct this symbolic language that into it can 
be translated the sentences of any given theory about any objects whatever, 
provided only that some signs of the language have received determinate 
interpretations such that the signs serve to designate the basic concepts of 
the theory in question. So long as we remain in the domain of pure logic 
(ie. so long as we are concerncd with building this language, and not with 
its application and interpretation respecting a given theory), the signs of 
our language remain uninterpreted. Strictly speaking, what we construct is 
not a language but a schema or skelcton of a language: out of this schema 
we can produce at need a proper language (conceived as an instrument of 
communication) by interpretation of certain signs. 

Part Two of this book sces a variety of such interpretations, and the 
symbolic formulation (axiomatically, for the most part) of thcories from 
various domains of science. All this is applied logic. Part One of the book 
attends to pure logic: here we describe the structure of the symbolic language 
by specifying its rulcs. In the present Chapter A, the first of the three 
chapters comprising Part One, we describe a simple symbolic language A 
containing the following sorts of signs (to be cxplained later); scntcntial 
constants and variables, individual constants and variables, predicate 
constants and variables of various Icvels and types, functor constants and 
variables, sentential connectives, and quantifiers, The third chapter, 
Chapter C, presents a more comprehensive language C. In Chapter Ba 
symbolic language B is represented both as a syntactical system and asa 
semantical system. 

1 



2 THE SIMPLE LANGUAGE A 

If certain scientific elements—concepts, theories, assertions, derivations, 
and the like—are to be analyzed logically, often the best procedure is to 
translate them into the symbolic language. In this language, in contrast to 
ordinary word-language, we have signs that arc unambiguous and formula- 
tions that arc exact: in this language, therefore, the purity and correctness 
of a derivation can be tested with greatcr ease and accuracy. A derivation 
is counted as pure when it utilizes no other presuppositions than those 
specifically enumerated, A derivation in a word-language oftcn involves 
presuppositions which were not made explicitly, but which cntered un- 
noticed. Numerous cxamples of this are afforded by thc history of geomctry, 
especially in connection with attempts to derive Euclid’s axiom of parallels 
from his other axioms, 
A further advantage of using artificial symbols in place of words lies in 

the brevity and perspicuity of the symbolic formulas. Frequently a sentence 
that requires many lincs in a word-language (and whosc perspicuity is 
consequently slight) can be represented symbolically in a linc or less, 
Brevity and perspicuity facilitate manipulation and comparison and 
inference to an extraordinary degree. The twin advantages of cxactness 
and brevity appcar also in the usual mathematic’! notations, Had the 
mathematician been confincd to words and denicd . .c usc of numerals and 
other special symbols, the development of mathematics to its present high 
levcl would have been not merely more difficult, but psychologically impos- 
sible. To appreciate this point, onc nced only attempt to translate into the 
word-language e.g. so clementary a formula as “(x+y)3=x3+43x2y+ 
3xy2+4y3” (“The third power of the sum of two arbitrary numbers cquals 
the sum of the following summands: ...”). The symbolic method gives 
mathematics an advantage in its investigation of numbers, numerical 
functions, ctc.; symbolic logic seeks this same advantage in full generality 
for its treatment of concepts of any kind. 

In the course of constructing our symbolic language systems, it frequently 
happens that a new precisely-defined concept is introduced in place of one 
which is familiar but insufficiently precisc. Such a new concept is called an 
explicatum of the old onc, and its introduction an explication. (The conccpt 
to be explicated is sometimes called the explicandum.) E.g. the concept of 
L-truth (to be defined technically later (5b) on the basis of exact rules) is an 
explicatum of the concept of logical or necessary truth, which is defined 
with insufficient exactness despite its frequent occurrence in philosophy 
and traditional logic. Again, the concept of the inductive cardinal numbers 
(37c) is an explicatum for the conccpt of finite numbcr that has been widely 
used in mathematics, logic and philosophy, but never exactly defined prior 
to Frege. (For a more complete exposition of the methods of explication 
and the requirements an adcquate explicatum must mect, see Carnap 
[Probability], Chapter |.] 

1b, The development of symbolic logic. Symbolic logic was founded 



|. THE PROBLEM OF SYMROLIC LOGIC 3 

around the middle of the last century and carried on into the present more 
by mathematicians than philosophers (cf. references to the literature, 57). 
The reason for this lies in the historical fact that during the past century 
mathematicians became increasingly more conscious of the need to 
reexamine and reconstruct the foundations of the whole cdificc of mathe- 
matics. Finding the traditional (i.e. aristotelian-scholastic) logic a totally 
inadequate instrument for this purpose, the mathematicians set about to 
develop a system of logic that was at once morc appropriatc, more accurate 

and more comprehensive. 
The resulting ncw symbolic logic (cspecially in the systems of Frege, 

Whitchcad-Russell, and Hilbert) clearly evinced a suitability to the first task 
set it, viz. to provide a basis for the reconstruction of mathematics (arith- 
metic, analysis, function theory, and the infinitesimal calculus). Further, 
in its logic of relations the new symbolic logic developed an abstract thcory 
of arbitrary order-forms, and thereby created the possibility of represcnting 
and_logically analyzing theories in which relations play an esscntial role, 
c.g. the various geometrics, physical theories (especially in reference to space 
and time), epistemology and, latterly, even ccrtain branches of biology. 
This development was a particularly significant advance beyond traditional 
logic. For traditional logic had neglected relations almost completely and 
hence proved entirely uscless in conncction with the axiomatic method (e.g, 
in geometry) that has become so important in recent decades. Still another 
merit of symbolic logic—minor, but nonctheless valuable—is that it 
achieved the complcte solution of certain contradictions, viz. the so-called 
logical antinomies (cf. 21c), whose analysis and elimination were beyond the 
reach of the old logic. 

For literature on matters treated here, sce the references, 57. In the text of this book, 
citations of the literature ure phrased with the help of abbreviated titles in square brackets: 
cf. the bibliography, 56. (‘[P.M.)' is used without author names for Whitehcud and 
Russell, Principia mathematica, and similarly for several of my own works.) 

In the domain of symbolic logic the expressions “algebraic 
elc., were employed at an earlier date but arc no Jongcr custo~ 

mary today _ In addition to “symbolic logic” and “mathematical Jogic", the designation 
“Jogistics" is often used, especially on the European continent; it is short and permits the 
formulation of the adjective “logistic”. The word “logistics” originally signified the art 
of reckoning, and was proposed by Couturat, Jtclson and Lalande independently in 1904 
as u name for symbolic logic (according to the asscrtion of Zichen, Lehrbuch der Logik, 
p. 173, note 1, und Mcinong, Die Stellung der Gegenstandstheorie, p. 115). 

Concerning results of the new symbolic Jogic in comparison with traditional ogic, cf. 
Russell [World], Chap. IJ; Carnap [Neue Logik]: Menger [Logic]. On the special 
importance of the logic of relations, cf. Russell, ibid. 
Conceming the reconstruction of mathematics on the basis of the new logic, cf. the 

basic older works: Frege Grundlagen] and [Grundgesctzc); Peano [Formulaire]; as chief 
work, [P.M.]; and also Russel! (Introduction); a more recent work: Hilbert and Bernays 
[Grundlagen]; for an casy presentation of the basic ideas: Carnap, “Die Mathematik als 
Zweig der Logik”, Blatter f. dt. Philos. 4, 1930; Carnap, “Die Jogizistische Grundjegung 
der Mathematik”, Erkenninis 2, 1931. 



4 THE SIMPLE LANGUAGE A 

2. INDIVIDUAL CONSTANTS AND PREDICATES 

2a. Individual constants and predicates, The theoretical treatment of any 
domain of objects consists in sctting up scntences concerning the objects of 
the domain (sentences ascribing certain propertics and rclations to the 
objects in qucstion), and in establishing rules according to which other 
sentences can be derived from those given. The basic objects treated of in 
a given language system are called the individuals of the system; and their 
totality, the domain of individuals (briefly, the domain) of the system. This 
domain is sometimes called the universe of discourse. To form sentences 
concerning the individuals of a given domain there must first of all be 
available in the language two kinds of signs: |. names for the individuals 
of the domain—we call these individual constani . designations for the 
properties and relations predicated of the individuals—we call these 
predicates. 

For individual constants we usc the Ictters ‘a’, ‘b’, ‘c’, ‘d’, ‘e’. E.g. if our 
language were to be applicd to the domain comprising the heavenly bodies, 
‘a’ might perhaps designate the sun, ‘b’ the moon, etc. Again, if the domain 
were a certain group of pcople, ‘a’ might be taken as an abbreviation for 
“Charles Smith’, ‘b’ for ‘John Miller’, etc. So long as our considcrations 
arc purely logical, we shall not troublc ourselves as to what special domain 
of individuals our language might be applied, and what particular individuals 
of that domain might be designated by ‘a’, ‘b’, ctc. It is only when we move 
away from pure logic (i.e. from consideration of the skeleton language to be 
constructed in what follows) that we speak of the interpretation of the 
scparatc individual constants and predicates. We do this last e.g. in the 
sccond part of this book, wherc several systcms are presented as applica- 
tions; we do it also in the first part, in conncction with illustrative examples. 

For predicates we usc the letters ‘P’, ‘Q’, ‘R’, ‘S’, ‘J’. In connection 
with illustrative applications, we also usc for predicatcs various letter groups 
with first letter capitalized (cf. the examples in 2c below); these Ictter groups 
arc based on words of the word-language. 

E.g. in a certain application ‘P’ might designate the property Sphcrical. 
[I prefer this mode of expression to the more elaborate turn of phrase ‘the 
property of being spherical”. Similarly, | write “the property Prime 
Numbcr”, “the property Odd”, etc. Again, I use “the class Spherical” in 
place of “the class of spherical individuals”; and analogously, “the class 
Bluc”, ctc. And again, I say “the rclation Greater” rather than “the 
relation that obtains betwcen x and y when x is greater than y"; and simi- 
larly “the rclation Similar”, “the relation Father”, etc.] Now suppose 
that, in addition to designating the property Spherical by ‘P’, we take ‘a’ to 
designate the sun and ‘h’ to designatc the moon. Then in our symbolic 
language we writc the sentence ‘P(a)’ for “the sun is spherical”. Similarly, 
‘P(b)’ is the translation into our symbolic language of the English sentence 
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“the moon is spherical’, To give a symbolic translation of the scntence 
“the sun is greater than the moon”, we need a sign for the relation Greater. 
Taking ‘R’ for this relation, we write “R(a,b)' as our symbolic translation of 
“the sun is greater than the moon” Again, if a and 6 are persons (i.c ‘a’ 

and ‘b’ arc interpreted as personal namcs), and ‘S’ is taken to designate the 
relation Similar, then ‘S(a,b)' means “‘a is similar to 6”. Likewise, we can 
translate the scntcncc “‘a is jealous of b with respect to c’’ into ‘7(a,h,c)’ if 
we use ‘7” to designate the triadic or thrce-place relation Jealous. 

In the sentences *P(a)’ and ‘R(h,c)’, the ‘a’ and *b' and ‘c’ are called 

arguinent~ expressions. Further, ‘b’ is said to stand in the first argwnent- 
position, ‘c’ inthe second We say ‘P’ is a onc-place (or monadic) predicate, 

and ‘R’ a two-placc (or dyadic) predicate. Generally, a predicate is said to 
be n-adic (or n-place, or of degree n) in casc it has » argument-positions. 
Predicates of degree higher than two can be introduced whenever they arc 
needed in connection with a given domain of objects. We say that ‘(a)’ 
is a sentence-completion or full-sentence of the predicate ‘P*; similarly, 
‘R(b,c)' is a sentence-completion of *R’. The examples given here illustrate 
the use of single letters as predicates and argumcent-cxpressions, but not 
such a use of Icttcr groups (this occurs in 2c) and compound expressions. 
When single letters arc so uscd we usually omit parcntheses and commas, 
and write simply ‘Pa’, ‘Rab’, ‘Tabc’, ctc. 

Regarding terminotogy. In ordinary word Janguage there is no word which com- 
prehends both propcrtics and relations, Since such a word would serve a useful purpose, 
Ict us agree in what follows that the word “attribute” shal} have this sense Thus u One- 
place attribute is a property, and a two-place (or 4 many-pluce) attribute is a relution. 
2. Similarly, it is useful to have a comprehensive term for the designations of one- and 
many-place attributes, For this, let us follow Hilbert and use the word “predicate”, 
(Heretofore, this word has been confined mostly to propertics or to designations of them, 
and has not includcd many-place attributes or predicates) Thus a one-pluce predicate 
is a sign for a one-pluce attribute (i.e. for a property), and in general an n-place predicate 
isa sign for an n-place attribute 3. Let us always distinguish clearly between signs and 
what is designated Failure to observe this distinction has in the past occasioned much 
confusion in logic und in philosophy generally (cf [Syntax] 42). In speaking about an 
expression, Jet us always put the expression in quotation marks or use some special 
designation for it, c.g. a German Ietter as in 21a. We make but one exception to this 
practice; we Omit quotation marks in case the expression stands On a Jine cither alone or 
with a designating number or Ictter, see c.g Our cnumeration of the formulas in TR-2. 
Suppose c g ‘Pa’ is taken as a symbolic translation of “a is old"; then we sa 
not: 'P’) isu one-place attribute, viz. the property Old, this attribute is designated by a 
one-place predicate *P""’ Similarly, we say. “the two-place relation R cxists between 
such and such persons”, “the two-place predicate *R’ occurs in such and such a sentence”, 
And similarly. “the individual a...", “the name ‘a’ ™. 

2b. Sentential constants. It is often burdensome to work with sentences that are 
entirely written Out Jike *Pa’ or *Rhc*, especially if they ure even Jonger or are repeated 
frequently in the same connection. We therefore use on occasion the Ietiers *A’, *B’, 
*C’ as abbreviations for any sentences whatever of the symbolic Janguage. ‘These Setters 
are called seutential constants (or: propositional constants). F.g. in a certain case *A" 
might be taken as an abbreviation for ‘Pa‘; as soon as “P* and ‘a’ arc interpreted, ‘A’ is 
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also interpreted. In our use of a sentential constant we will for the most part leave open 
what particular sentence it stands for as an abbreviation. 

2c, Illustrative predicates. To facilitate framing cxamples in connection with the 
further construction of our symbolic language system, we list here various predicates, 
functors (cf. 18) and individual constants for particular domains of individuals. 

1 The domain: physical things 

moon the moon 
Book(a) ais a book 
Blue(a) ais blue 
Sph(a) ais spherical 

2, The domain: hwnan beings (presently alive) 

Mila) ais male 
Fa) ais female 
Stud(a) ais a student 
Fa(a,b) q is father of b 
Mo(a,b) ais mother of b 
Par(a,b) ais a parent of b 
Bro(a,b) ais brother of 6 
Hus(a,b) a is husband of b 
Friend(a,b) ais friend of b 

3. The domain. natural mumbers (0, 1, 2, ctc ) 

0,1, 2,.. (in their usual signification) 
Even(a) a is an cven number 
Prime(a) ais a prime number 
Grla,b) q@ is greater than b (a>b) 
Sm(a,b) qaissmallcr than b (a<b) 
Pred(a,b) a is the (immediate) predecessor of b (a+1=b) 
‘Sq(a,b) ais the square of b (a=?) 
sq(a) the square ofa (a?) 
prod(a,b) the product of a and b (a-b) 
‘sq’ and ‘prod’ are functors, cf. 18. 

3. SENTENTIAL CONNECTIVES - 

3a. Descriptive and logical signs. The individual constants and predi- 
cates we have become acquainted with up to now are mostly (viz. in the 
first two of the threc domains considered in 2c) non-logical signs or, better, 
descriptive signs. Such signs designate things or processes in the world, or 
properties or relations of things, or the like. Determinatc’ meaning is 
attached to descriptive signs only when we apply them, i.e. only when we 
g0 outside pure logic. Thus we must distinguish between descriptive signs 
and Jogical signs which do not themsclves refer to anything in the world of 
objects, but do serve (along with descriptive signs) in sentences about 
empirical objects. The usc of logical signs is determined by the logical rules 
of the language; on the other hand, meaning is arbitrarily attached to 
descriptive signs when they are applied to a given domain of individuals. 
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Among the logical signs are the parentheses ‘(’ and ‘)' and the comma ‘,’ 
as in e.g. ‘Fa(a,b)’. However, these signs have only a subordinate role, 
analogous to that of punctuation ‘marks. More important as logical signs 
are the connectives, which are used to form compound sentences from simpler 
sentences (e.g. from sentence-completions of predicates). In what follows 
we introduce the connective signs and specify how thcy shall be used, there- 
by determining their meaning. This determination is accomplished in a 
two-step fashion: |. by specifying truth-conditions for compound sentences; 
and 2. by specifying English translations of the connectives. Specifications 
of this latter sort, while easier to grasp, are of course Icss exact because the 
English words to be employed correspond in some cases only approximately 
to the connective meanings and moreover the usage of these words is itself 
often ambiguous. Specification of truth-conditions for a connective 
consists in an agreement which fixes the conditions under which a compound 
sentence (formed by means of the connective and the sentences that cnter 
as components) is to be considered true in terms of the truth and falsity of 
it¢¢componcnts. 

3b. Connective signs, Suppose we have two sentences, ‘A’ and ‘B’, 

Then the sentthce ‘(A)V(B)’ is called the disjunction (or alternation, or 
logical sum) of the sentences ‘A’ and ‘B’. We agree that the disjunctive 
sentence ‘(A)V(B)’ is true if and only if at least one of the two scntences 
‘A’ and ‘B’ is true, i.e. if either ‘A’ is true, or ‘B’ is true, or both of them 
are true. The sign ‘V’ of disjunction corresponds with fair exactness to the 
English word ‘‘or” in those cases where “or” stands between two scntenccs 
and is used (as it most frequently is) in the non-exclusive sense; when “‘or’ 
is used in the exclusive sense, the sentence ‘A or B” has the meaning: 
either. A or B, but not A and B”. Accordingly, ‘(Pa)V(Qb)’ means: 
“ais P or bis Q, or both” Again, *{Stud(a)]V[ Fi(a)]' means “a is either a 
student or a femalc, or both (i.e. a woman student)”. We remark in this 
connection that the parentheses which enclose the sentential parts of a 
compound will be written indifferently as round brackcts and as squarc 
brackets. 

Next, let us agree that the sentence ‘(A).(B)'—the conjunction (or logical 
product) of 'A’ and 'B’—is true just in case both ‘A’ and 'B’ are true. The 
sign ‘.’ of conjunction thus corresponds to the English word “and”, where 
“and” stands between sentences. Hence ‘(Pa).(Qb)’ means “a is P and bis 
Q", and ‘(Stud(a)].[F(a)) means “a is a woman student”. 
Whereas the signs of disjunction and conjunction join together two 

sentences, the sign ‘~’ of negation is used in connection with but one 
sentence We say that the sentence ‘~(A)’ is true just in case ‘A’ 
is not truc, i.c. ‘A’ is false. Thus the negation sign corresponds to 
the English word “not”. Regarding this translation, howcver, we must 
observe that while the connective refers to the entire sentence, the 
word “not” generally refers to but a portion of the entire sentence. 



8 THE SIMPLE LANGUAGE A 

Accordingly, “~[P(a)]' means “a is not P”; and ‘~ [Even(3)]’ means “3 is not 
even”. 

The sentence ‘(4)>(@) is an abbrzviation for ‘[~(A)]V(&). Hence 
‘(A)>(&)' is true just in case either ‘A’ is falsc, or clse ‘8’ is true, or both, 
In many cases, ‘(A)>(&)' corresponds to the English sentence “if A, then 
8" There is an important difference betwecn the two sentences, however, 
In English, the if-sentence is uscd only when there is a conncction (perhaps 
of a logical or causal sort) between the two scntential parts of the compound, 
In the symbolic language the >-sentence is used without any such limita- 
tion. Thus, if 'A’ is “my desk is black", then ‘{@/ue(moon)]>(A)’ is truc 
whether 'A’ is true or false, because ‘@lue(moon)’ is falsc. (In English, 
however, the sentence “If the moon is bluc, then my desk is black” would 
scarcely be considered an appropriate correct scntencc. It falls rather 
among the many sentences of that word-language which are not customarily 
included cither with the true sentences or with the false sentences—and this, 
even though sufficient knowledge is at hand to decide the truth or falsity of 
the scntential parts. Scntenccs of this sort simply do not occur in a well- 
constructed language). Similarly, the sentence ‘(4)>[Sph(moon)]’ is true 
whether ‘A’ is truc or false, because 'Sp/(moon)’ is true. We shall became 
acquainted later (in 9c) with a class of sentences whose ‘>’ can always be 
translated appropriatcly by “if—then”. Note however that the often- 
inappropriate if-translation for ‘(A)>(8)’ can be avoided by using instead 
“not A, or &”; this last translation is always appropriate. 

The sign ‘>’ is frequently called the implication sign, and ‘(A)>(&) 
read ‘A implics &”. It is to be emphasized, howcver, that ‘>’ is not to be. 
given the usual signification of “implication” and “implicate”, viz. (logical) 
entailment; nor is ‘(A)>(8)' to be read “‘@ is a consequence of ‘A’” or 
“«B" is deducible from ‘A’. So much should be clear from our previous 
examples. [One should therefore be on his guard against translating 
‘(A)>(BY as “from A follows &”.] The name “implication sign” for ‘>’ 
gocs back to the erroneous interpretation just given; in the’ past, this designa- 
tion has occasioned much obscurity (cf. [Syntax] 69, at the end). Since it is 
in gencral use, we retain “implication sign” as a technical cxpression, 
taking care to separate it clearly from the original mcaning of the words. 
[The technical meaning here in mind for ‘>’ is sometimes called ‘“‘matcrial 
implication” in contrast to “logical implication”, which is the relation 
holding between ‘A’ and ‘&’ when ‘8’ is a logical consequence of *A’. To 
avoid confusing these two possibilities, we have decided to call ‘(A)>(&) 
a “conditional sentence” or a conditional rather than an “implication”, and 
to read it “If A, then &”.] Also, in connection with the)conditional 
‘(A)>(B)’ we find it convenicnt to retain the name “antecedent’: for the 
first component ‘(A)’ and the name “consequent” for the second component 

(ay. 
The sentence ‘(A)=(8)' is called the biconditional (or: cquivalence) of 
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+4’ and ‘&’, and is counted as true just in casc ‘A’ and ‘4’ are both true or 
else both false. This sentence is often called simply a “biconditional”, an 
“equivalence” or a “material equivalence”. It refers, of course, strictly to 
the equality of truth-values (cf. 4a), and not to the identity of meaning of its 

two members (this last relation is called “logical equivalence”, cf. 6a). 

We read ‘(A)=(8)' as “A is equivalent to 8” or “A if and only if 2”. 
3c. Omission of parentheses. Up to this point we have taken only 

sentences of the simplest form to serve as components in our sentential 
«compounds. However, sentences which are themselves compounds can 
yccur aS components in a sentential composition, e.g. the compound 
~(A)' in the sentence ‘{~(A)] V(@)’, and the compound ‘(4)V(4)' in the 
jentence ‘[(A)V(A)].(C)’. Since compositions of this sort can lead to a 
eat accumulation ‘of parcnthescs, it is out of practical expediency that we 

establish the following rules for omitting parentheses. Thc rules are stated 
so as to apply not only to sentences but also to sentential formulas, i.e. to 
sentences and other similar expressions (cf. 7a). 

It is @onsidered permissible to omit the parentheses that enclose a com- 

ponent formula provided onc of the following conditions is satisfied: 

1. The component formula so cnclosed is of simplest form, ie. it contains 
no other sentential formula as a proper part. [Examples: ‘A V 8’, ‘~ Pa’.] 

2. The component formula so enclosed is a compound formed with a con- 
nective more cohesive than the connective that has the component as a 
member. For this purpose we count ‘~’ morc cohesive than ‘V’ and ‘.’, 
and the latter two more cohesive than ‘>’ and ‘ (Examples: (~ A)V 2” 
an now be written ‘~AV A’, similarly ‘(~ A). 4’ can be written ‘~ A, 8" 
because ‘~’ is more cohesive than the other connectives. Again, 
‘AV B>C. D’ may be written in place of ‘(AV 8)>(C. D)’ because ‘V’ and 
*,’ are more cohesive than ‘>’. Likewise, we may write ‘A,8=CVD' for 

(4,8)=(CVDY ] 
3. The component formula so enclosed is a disjunction and is itsclf the 

first member of a disjunction; or it is a conjunction and also the first member 
ofaconjunction [Examples: Instead of ‘(A V&)VC’ we write ‘AV BVC’. 
We shall sce later (T8-6m) that ‘AV(@VC)' can be transformed into 
‘(AV B)V C’; thus ‘A V(BV CY’ may also be written‘A V AVC’. Analogously, 
instead of ‘(A 8).C’ we write ‘A.8.C’, and we do the same for ‘A.(&.C)’.] 

3d. Exercises. Many different phrases in English transJate into the same Jogical 
connectives. E.g Jet ‘A’ and ‘B* be sentences; then “If A, then 8” and “B provided that 
A” may both be symbolized by ‘A> B’ (although strictly speaking the Jatter is somewhat 
weaker than the former) Using the symbols *A’, *B’, '(',)', tn}, sym- 
bolize the following: 1. “B if A." —2. “A on the Caddie that B"—3, “B unless 
A" —4, “Assuming A, B “ — 5, “The condition that A is both necessary and sufficient 

“Neither A nor 8." —7. “B only if A“ —8. “Not B provided that if A, 
‘Neither B nor A only if B and A.’ — 10, “On the condition that A, not 

Bonly if B Bthen A.’ — 11, “If A, then if B then A." — 12, “A, or Band A." — 13, “Not 
B, but (i.e., and) if A then 2.” 
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4, TRUTH-TABLES 

4a. Truth-tables. We term Truth and Falsity the two possible truth. 
values of a sentence. Since every sentcnce is either truc or else false, two 
indcpendent sentences ‘A’ and ‘B" can show four possible combinations of 
truth-values: cither both sentences are truc, or only the first, or only the 
second, or neither. Designating Truth by ‘T’ and Falsity by ‘F’, these four 
cases may be indicated thusly: TT, TF, FT, FF, When the truth-conditions 
previously established for ‘AV 8B’ are recalled, this sentence is seen to be 
true in the first three cases and false in the fourth. Similarly, ‘A.B’ is seen 
to be true only in the first casc and false in the remaining three. Again, 
‘A> B’ is false only in the second casc and true in the others, while ‘A= B" 
is truc in the first and last cascs, and false in the other two. 

The table below, called a truth-table (or a truth-value table), presents 
compactly the truth-values of the compounds in cach of the four possible 
cases, It is well to remark that the letters ‘T’ and ‘F’ are not signs in our 
symbolic language, but simply abbreviations for the English words “true” 
and “false”. English itself serves herc as our meta-language, i.e. the Janguage 
in which we speak about the symbolic language (sec 20), Truth-tables 
belong to the mctalanguage, not the symbolic language: they represent 
in tabular form what was prescnted in 3b by means of English, viz. spccifica- 
tions of the truth-conditions of sentential compounds in our symbolic 
Janguage. (Notc: The ‘+’ prefixed to certain theorems, definitions, rules, 
tables, etc., indicates—as here, with Tables | and Il—those which are 
especially important.) 

+ TRUSH-TABLE 1 
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Since a negation has only onc component, only two cases are possible: 

+ TRUTH-TABLE IL 
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With the help of Truth-table | and Truth-table II we can determine the 

iruth-valucs of an claborate compound involving, say,n different constituent 

sentences (11= 1,2,3,...) joined by our various connectives. First we set up a 

table whose vertical column (1) shows the 2" possible combinations of 

truth-values for the 1 constitucnt sentences. Then, beginning with these 

constituent scntcnces, we determine in each case the truth-values of the 

successively larger compound components until we arrive at the truth-value 

of the original elaborate compound itself. When this has been done for 

all 2" cases, the distribution of truth-values for the original compound will 
have been obtained. The examples below illustrate this truth-table tech- 
nique. 

Examples. Compounds involving just one constituent sentence, Here we deal with 
two compounds, ‘4V~ A" und *A,~ A" and display their values in Table 11] Our dis- 

cussion will expluin how this table is built up — Example | the scntential compound 
*AV~A’ Only one constituent sentence, *A‘, being involved here, we set up a truth- 
table whose column (1) is headed with “A’ and which contains 2!=2 horizontal rows, 
The next simplest component of *4V~ A" is *~ al’; so we head column (2) of the table 
with'~ 2°, dnd use Tuble II to find the appropriate truth-valuc entries thercin No other 
components remaining, we head column (3) with the sentence ‘AV~ A* itself. To find 
the truth-valuc entries in (3), we procecd us follows *AV~ A’ is # disjunction; In the first 
row of our table the two components *A* and *~ A* of this disjunction have respectively 

(we sec from columns (1) and (2)) the values T, F; in this case, us we learn from the 
second row of column (2) of Tuble I, a disjunction has the value T, we therefore enter 
ST in the first row of column (3); and procecding similarly, the entry *T" is made in the 
second row of column (3). Columns (1) und (3) of Table 11] thus constitute a truth-table 
for the sentence ‘A V~ A‘, column (3) in particular indicating the distribution of truth- 
values for *AV~ A‘ — Evample 2 the sentential compound ‘A.~A* Here again we 
proceed as in Example 1, with the difference that we refer back to column (3) of Tuble 1 
for the final values of the conjunction *A.~ A" Columns (1) and (4) of Table 111 thus 

TRUTH-TABLE LIL 

qd) (2) (3) "  4) 
A ~A ANw~A | AWWA 

1] T pe] ©. #£ 
2’ F | F | iF 

constitute a truth-table for *A.~ 4°, with column (4) showing the actual distribution of 
truth-valucs, 
Compounds involving two constituent sentences Here we deal with three examples, 

the compounds, *~(AV B)', *~A.~ B" and *~(AV B)=~A.~B’. The distribution of 
values of *~ (4 VB)’ is shown in Table 1V, column (3); that of *~ A.~ B" in Table 1V(6); 
and that of '~ (AV B)=~ A.~ B’ in Table 1V(7). Let us now explain how the distribu- 
tions of these compounds arc obtained. - - Example 3; the sentential compound '~ (A V B)', 
This negation has two constituent sentences, ‘A* and *B’, hence we construct a table of 
22=4 rows whose column (1) shows the possible truth-combinations for ‘A’ und ‘B"; 
column (2) is headed *A V B’, the only component of our negation, and the values entered 
under it ure obtained from Table 1(2); finally, column (3) is hcaded by the negation 
‘~(AVB)' itself, and the entries thercunder obtaincd by reversing the corresponding 
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TRUTH-TABLE IV 

a eed ' T = 
qa) @ . @) (4) (5) © 7) 

, AVB ~(AVB)! ~A : ~B) ~A.~B ~(AVA)=~A.W~R AB \ 

1 TT T' F Pept p- | T 
2 TF F F FOOT F T 
7tnr FT E a ae T 
4 FF F T alls T T 

values in column (2) (for we know from Table II that the negation of a sentence has a 
truth-valuc opposite that of the sentence itself), Columns (1) and (3) of Table 1V thus 
constitute a truth-table for '~ (A V A)’, column (3) itsclf showing the actual distribution of 
truth-values — Example 4 the sentential compound *~A.~8", As in Example 3, so 
here we need for our conjunction '~A.~ 8" a table of four rows whose column (1) is that 
of Table [V; next, the components of the conjunction being*~A" and *~ B', we want two 
columns so headed (these are (4) and (5) in Table 1V), with entries that arc opposite those 
in (1), finally, we make a column (it is Table 1¥(6)) headed with the conjunction 
*~A.~B" itself, and obtain its entrics as follows’ in the first row, sentences (4) and (5) 
have the values FF respectively, hence by Table 1(3) our conjunction (6) has here the 
value F, and similarly we obtain the values in the other thrce rows of (6) Columns (1) 
and (6) of Table IV thus constitute a truth-table for'~A.~ B".- - Example 5 the senten- 
tialcompound'~(AV 8)=~A.~ B" This equivalence involves two constituent sentcnees, 
*A’ and ‘B', hence calls for a table of four rows whose column (1) is that of Table 1V, the 
two components of the equivalence arc the sentences *~(AVB)' and *~A,~ B’ whose 
values are already displayed in columns (3) and (6) of Table LV; thus we need only a last 
column (7) headed by our equivalence; now reading (3) and (6) together, row by row, we 
sce that the components of our equivalence furnish only two different combinations of 
truth-valucs, viz, FF and TT, hence with the help of Table 1(5), rows 1 and 4, we find 
the value T for each entry in (7), Columns (1) and (7) of Table IV thus constitute a 
truth-table for'~(AV B)=~A.~B", 

It is useful to show how the truth-table mcthod described above can be 
simplified. The simplification consists in not forming scparate columns for 
the scveral components of a compound, but instead listing the valucs directly 
undcr letters and under conncctive signs, E,g, Table V is such a simplifica- 
tion of Table IV. 

TRUTH-TABLE V 

~ v B) = ~ A ‘ ~ B 
©, OO) 7; @/ 810, o@)2@ 
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Example, tis evident that columns (1) and (7) of Table V furnish for ‘~(AVB)= 
~A.~B' the same information that Table 1V(1)(7) does, Let us examine the steps by 
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which this simplified Table V is built, We number these steps (1), (2), and label with 
the same number the corresponding column(s) in Table V (1) Under the first oceurrence 
‘of each different constituent letter, enter truth-valucs as in Table 1(1), (2) Enter the 
same succession of valucs under every other occurrence of these letters (3) Using 
Table 1(2), enter under ‘V’ the values of the disjunction that correspond to the valucs of 
sat and 'B’ there. (4) Under cach of the two signs '~" in the right side enter the appro- 
priate values according to Table Il (these columns will then appear as Table 1V(4)(5) 
respectively), (5) Under the first sign *~* enter values that are opposite those given 
under *V’ (since the values of the sentence to which this *~" applics arc precisely those 
listed under its principal connective *V') (6) Using Table 1(3), enter under the con- 
junction sign '." the values determined for it by its components (the column resulting 
here is the same as Table 1V(6)). (7) Finally, usc Table 1(S) to enter under ‘=" the 
appropriate values, remembering here that the values of its components are listed respec- 
tively under the first *~' (i.e in (5) and under *." (i ¢ in (6)); the resulting column is the 

Ic 1V(7). In this simpler way we have determined the distribution of values 
for our original equivalence. 

A sentence is called a tautology, a contingency, or a contradiction accord- 
ing as its distribution of truth-values shows respectively only “T’, at least 
one 'T’ and at least one ‘F’, or only ‘F’. 

Partial uth-tables. Frequently we arc interested simply in deciding whether a given 
sentence is a tautology The question whether a given scntence conjcctured to be a 
tautology actually is onc can be scttled by using a partial truth-table in the following w 
Assign the valuc F to the whole sentence, and chcck to see if this valuc can be maintained 
when we proceed backwards step by step through the valucs of successively smaller 
‘components. 

Example. \s the sentence’ [A>(~ B= C)]>(A,C>~B)' a tautology” Let us apply 
to it the test described above We shall explain each step of the tcst carefully, and show 
the results in Truth-table VI. (Note that the sentence to be tested has three distinct 
constituent scntenccs, ‘A’ and *B' and ‘C’, hence a full truth-table for it would require 
23=8 rows, a glance ahcad at Table VI tells that our test requires only one row.) Write 
out the sentence being tested, and (1) enter ‘F* under its principal connective '>" (2) 
Since, according to Table 1(4), a conditional has value F just in casc its members have 
respectively the values T, F, we enter ‘T* under the principal conncctive ‘>" of the antc- 
cedent and ‘F’ under the principal connective >" of the consequent. (3) Now a condi- 
tional can take on the valuc T in three cases, but the valuc F in only onc Henec we 
have to cxamine three cases if we work with the antecedent, but only one if we work with 
the consequent. Thercfore we proceed with the consequent. As in step (2) so here the 
two parts of this consequent necessarily have the values T, F respectively, in consequence, 
we enter under *.* the value T and under the last *~* the valuc F (4) A conjunction 
having the value T just in casc cach of its components has this value, we next enter “T" 
under ‘A' and under *C" (5) If a negation has the value F, then the component being 
negated must (by Table I) have the valuc T; hence we enter under the last ‘B’ the valuc 
T (6) Every part of the right side of our original conditional now having a determinate 
value, Ict us give our attention to the left side. Here it is simpler to reverse our direction 
and procced outwards, not inwards So we enter under the ‘A’, ‘B" and ‘C* of the left 
member the values T, T, T found under these same letters on the right. (7) It now follows 
that the entry 'F" must go under the left sign *~", and further (8) that the cntry *F* gocs 

under the connective *=" (9) From this ‘F’ under ‘=" and the “T' alrcady under the 
first “A’, it is neccssary that an ‘F* be placed under the first'>*. But a ‘T’ has alrcady 
(in step (2)) been entered under that first ‘>", henec this new entry is incompatible. We 
conclude that our initial assignment of the valuc F to the original sentence (done in step 
(1)) is impossible. Hence, the original sentence is a tautology, 
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PARTIAL TRUTH-TABLE VI 

>, B= Ol >, A. € >,~ B © | O10: 0/0/10) 4:4) 6) @, O18 
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Note that the method of partial truth-tables as used in Truth-table VI can be employed 
to determine whether a sentence is a contradiction or not This method can also be 
employed to determine whether a sentence is a contingency or not 

Exercises. 1. Write truth-tables like V for the following, and thus decide whether 
they are tautologics, contingencies, or contradictions: a)'~(A.B)=~ AV~B", b)'~(A> 
B)>~B.~A'; c) (A> B)V(B> A)’; d) ‘B=((A>B)V~B)'; c) * A=(B=C) =((Az 
B)=C)' —2. How can the method of Truth-table VI be used to determine whether a 
sentence is a contradiction? —3. How can the method of Truth-table VI be used to 
determine whether a sentence is a contingency? — 4. Using the method of Truth-table VI 
on the following, decide whether a), b), c), d) are tautologies, and whether e) is a contra. 
diction a) (A= B)>((C,A)=(B.C))', b)'~B>(A=(~A.8))'; c) ((AVB)>C)> (A> 
C).(B> C)', d) (B=(~AV B))>(A.~ 8)’; c) *~(A> B).~(A>~ By. 

4b, Truth-conditions and meaning, What the truth-table of a connective 
gives is primarily a necessary and sufficient condition for the truth of a 
compound so connected, in terms of the truth-values of its members, Now, 
however, it is easy to see that the specification of such a condition amounts 

to the assignment of a unique meaning to the connective (and therefore 
that the addition of an English translation for the sign is theoretically super- 
fluous, however helpful it may be pedagogically or psychologically). For 
suppose that a person knows the sense of the sentences ‘A’ and ‘8’, where 
perhaps ‘A’ says that it is (now, in Paris) snowing and ‘A’ says that it is 
raining; and suppose no translation of ‘V’ has been given him, but only the 
Truth-table 1(2), Can the person then comprehend the meaning of the 
sentence ‘AV B' so that (a) he knows when it is permissible to assert this 
compound on the basis of his factual information; and (b) he can extract 
from a communication having the form of this compound the factual 
information being communicated? The answer is: he can. Perceiving 
from the truth-table that the compound holds in the first threc cases but not 
in the last, our subject knows precisely the conditions under which the 
compound may be asserted and he knows precisely what information it 
conveys as acommunication. For on the one hand he knows the compound 
sentence may be asserted if his observations of the present weather in Paris 
indicate it is both snowing and raining (case 1), indicate it is snowing without 
raining (case 2), indicate it is raining without snowing (case 3); and on the 
other hand he knows the compound may not properly be asserted if indica 
tions are it is neither snowing nor raining (case 4). Again, were our subject 
to receive this compound sentence as a communication, he could gather 
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from it (provided, of course, he believed the communicator) that one of the 
first three cascs obtained, but certainly not the last. All this the person 

himself can translatc into the word-language as “‘it is raining or it is snowing, 

or both”, or as “‘it is not the case that it is neither raining nor snowing”, or 

however he will. In any event, it is not necessary that our subject have a 

translation of ‘V’; its meaning is fully determined by the truth-table for ‘V’. 
‘These remarks support a general statement: a knowledge of the truth- 

conditions of a sentence is identical with an understanding of its meaning. 

5. L-CONCEPTS 

Sa, Tautologies. Suppose S, is a sentence composed out of the sentential 

constants ‘A’, ‘B’, ctc., with the help of the scntential conncctives previously 
discussed. (Here ‘S,’ is a sign of the metalanguage which serves to refer to 

sentences of the symbolic language. Cf. 20, 21a.) By a value-assignment 

for &, we understand any assignment of truth-valucs to the sentential 

constants occurring in S,. If S, involves n distinct sentential constants, 
then there are 2” possible valuc-assignments for &, ; these value-assignments 
are represented by the rows of the truth-table for the sentcntial constants. 
By the range of S, we understand the class of those possible value-assign- 
ments for S, at which G, comes out true; these particular value assignments 
are represented by the rows of the truth-table which have the entry ‘T’ in 
the last column. E.g. consulting Tablc I(2), we sec that the range of ‘AV B” 
consists of the first three of the four value-assignments for ‘A V B' represented 
by the four rows of Table I(1); similarly, the range of ‘A= B’ consists of the 
first and last of these value-assignments; and similarly, the range of ‘A.B’ 
consists of just the first of these value-assignments. 
Now it is easy to see that the smaller the range of a sentencc, the more 

the sentcnce says. Suppose c.g. wc know the meaning of each of the two 
sentences ‘A’ and ‘AB’. If, then, ‘A.B" is communicated to us, we know 
precisely which of the four possible cases (ie. which of the four value- 
assignments) actually obtains: it is the first onc. On the other hand, the 
communication ‘A = B’ is indeterminate, for it does not decide between two 
possibilities. Again, ‘AVB' is even more indeterminate, for it excludes 
only one possibility and fails to decide between thrce possibilities. And if 
the range of a séntence is otal, i.e. if, like ‘AV~A’ (cf. Table I11(3)), its 
tange comprises all possible value-assignments, then the sentence excludes 
no possibility and hence says nothing. E.g. if ‘A' means “‘it is raining here 
and now”, then ‘AV~ A" means “‘it is raining here and now, or it is not 

raining here and now’'—a sentence which is true in every possible circum- 
stance, no matter whether it is raining here now or not; if communicated to 
us, we could learn from it nothing whatever about actual present circum- 
Stances. Sentences which thus are true for all possible value-assignments 
of their conitituent parts are said to be tautologous sentences or tautologies. 
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5b. Range and L-truth. Suppose we want to investigate a given sentence 
with a view towards cstablishing its truth-valuc. The procedure necessary 
to this end can be divided into two stcps. Clearly we must, to begin with, 
understand the sentence; therefore, the first step must consist in establishing 
the meaning of the sentence. Here two considcrations enter: on the one 
hand, we must attend to the meanings of the several signs that occur in the 
sentence (these meanings may perhaps be given by a list of meaning-rules, 
arranged e.g. in the form of a dictionary); and on the other, we must attend 
to the form of the sentence, i.c. the pattern into which the signs are assembled. 
The second step of our procedure consists in comparing what the sentence 
says with the actual state of the affairs to which the sentence refers. The 
meaning of the sentence determines what affairs are to be taken account of, 
ic. what objects, what properties and relations of these objects, ctc. By 
observation (understood in the widest sense) we scttlc how these affairs 
stand, i.e. what the facts are; then we comparc these facts with what the 
sentence pronounces regarding them. If the facts arc as the sentence says, 

then the sentence is truc; otherwise, falsc. 
In the usage of philosophers, the word “logical” is quite vague and am- 

biguous. We shall not attempt to state a general and cxact definition of the 
word herc. But we can incrcase somewhat the clarity of our remarks by 
indicating (in a non-technical way, with no claim to precision) certain 
situations in which we intend to usc the term “logical”. Our uses of this 
term will appear to be in reasonable agreement with those of ordinary 
language—completc agreement naturally cannot be demanded, considering 
the confused state of familiar speech. We shall call a procedure /ogical 
when it is grounded only in the analysis of senses (the first step of our 
previous paragraph) and docs not require any observations of fact (the 
second step above); if the procedure requires the second step, we call it 
non-logical, or synthetic, or empirical. The analysis of sensc we therefore 
term “logical analysis”. Similarly, we refer to every concept which can be 
specificd exclusively on the basis of the first step as a logical concept; 

concepts which depend on observation are counted as non-logical (descrip- 
tive, factual). Finally, we say a result or a statement is logical if it is 
based exclusively on the analysis of sense; and we say the same of a question 
whose answer comes about solcly by analysis of sense. 

Now Ict us introduce several concepts which are logical in the scnse just 
indicated. We shall call thom L-concepts, and shall form terms for them 
with the prefix “L-". 
We divide all the signs of our symbolic language into two classes, the 

constants and variables. Every constant has a fixed specific meaning. 
Variables, on the other hand, serve to refer to unspecified objects, properties, 
etc.; they will be cxplaincd in subscquent scctions. Again, we divide all 
our signs into /ogical and descriptive (or non-logical). Descriptive signs are 
those constants which serve to refer to objects, properties, relations, etc., in 
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the world; they include the individual constants, the predicates, and the 
sentential constants. Logical signs include all the variables and the logical 
constants. Logical signs do not themselves refer to something in the world 
(the world of things has nothing like negation, disjunction, ctc.); rather, 
they bind together the descriptive constants of a sentence and thercby 
contribute indirectly to the sense of a sentence. The logical constants 
comprise the connective signs, and such auxiliary signs as brackcts, commas, 
etc. A compound expression is said to be descriptive if it contains at least 
one descriptive sign; otherwisc, it is said to be logical Thus, a logical 
expression is onc that contains only logical signs 
Wc turn next to a generalization of the concepts of valuation and range. 

Among the value-hearing signs we count all the descriptive constants and 
certain variables. We have alrcady taken as possible values for sentcntial 
constants the two truth-valucs, T and F. Later we shall lay down what other 

signs arc to be valuc-bearing signs, and what their possible values arc to be. 
The explanations which follow below will be conccived of so broadly as to 
apply not only to sentences, but more generally to sentential formulas, i.e. 

sentences or scntence-like expressions of other kinds to be described later. 
By a value-assignment for a given sentential formula S,, we mean a coordina- 
tion of valucs with all the value-bcaring signs that occur in S,. If a sign 
occurs in &, morc than once, the same value must be coordinated with cach 
of its occurrences. By the evaluation of a sentential formula at a specific 
valuc-assignment we understand the detcrmination of the truth-value of 5, 
for this value-assignment. When S, consists of sentential constants and 
connective signs, the evaluation of ©, is made by means of the truth-tables. 
Later we will lay down additional rules of evaluation for other types of 
sentential formulas. In analogy with the carlicr cxplanation, we take the 
range of the formula &, to be the class of those valuc-assignments at which 
, comes out true. The class of all possible valuc-assignments for S; (i.e. 
for the value-bearing signs that occur in S;) we call the total range of S,; 
the empty class of such value-assignments we call the null range. 

Sometimes it is said that a sentence (or a proposition, or a judgment) is 
logically true or logically necessary or analytic if it is true ‘ton purely logical 
grounds”, or if it is true independently of the accidental state of the facts, 
or if it holds in all possible worlds (Leibniz). It seems plausible to explicate 
(ie. to conceive precisely; cf. the note on explication at thc end of Ja) this 
imprecise notion in the following way We call a sentence L-true provided 
its range is the total rangc, hence provided it is true in every possible case. 
Every tautology is evidently L-true; later (14), we will encounter many 
L-truc sentences that arc not tautologies. Every L-truc scntence is true: for 
since it holds in every possible case, it holds in the casc actually before us. 
The truth of an L-true sentence is however not dependent on the facts, 
since it would be true whatever the disposition of the facts. Therefore it is 
unnecessary, to institute observations in order to establish the truth of an 
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L-true sentence; what suffices here is logical analysis, viz. investigation of 
all possible value-assignments on the basis of the rules governing evaluation. 
L-truth is thus a logical concept in the sense previously described. The same 
holds for subsequent L-concepts. 
We apply the notions of truth and falsity to sentences only, and not to 

other sentential formulas. (For these last, only the rclative concepts “true 
(or: false) respecting this or that value-assignment” are applicable.) On 
the other hand, we can define L-concepts for sentential formulas in general 
by means of our generalized concepts of value-assignment and range. Thus, 
in analogy with the considerations of the last paragraph, we say that a 
sentential formula is L-true just in case its range is the total range, i.c. it is 
truc for every valuc-assignment. 
A sentential formula is said to be L-false (or logically false, or contradic- 

tory) in casc its range is the null range, i.e. it is false for every valuc-assign- 
ment. Every L-falsc sentence is evidently false; moreover, its falsity 
resides entirely in the sensc of the sentence and is independent of the 
facts. 

If a sentential formula is cither L-true or elsc L-false, we say it is L- 
determinate: otherwise (i.e. if it is ncither L-true nor L-false), we say it is 
L-indeterminate. A sentential formula is L-indcterminate provided its 
range is neither total nor empty, i.e. when there is at Icast one value- 
assignment at which it is truc, and at Icast one value-assignment at which it 
is false. Of an L-indeterminate sentence (though not of an open sentential 
formula) we also say that it is factual. This concept is intended to be an 
explication for the traditional notion of the synthetic judgment. Logical 
analysis does not sufficc to ascertain the truth-value of a factual sentence; 
it is necessary to observe facts in order to establish whether we have before 
us one of the cases in which the sentence is true or one in which it is false. 
(As examples of factual sentences, we offer: ‘Sph(moon)’, ‘~ Sph(moon)’, 
“Stud(a)V Bro(a,b)’.) If a factual sentence is true, we call it F-true (or 
factually true); if false F-false (or factually false). 

The remarks of our Kast four paragraphs suggest the following classifica- 
tion of sentences (this classification is not applicable to other sentential 
formulas): 

true false 

| | 
Nai — x 4 

L-tmue Fanuc F-false L-false 

factual 
(analytic) (synthetic) (contradictory) 
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The theorems below follow from the definitions of the L-concepts and 

ruth-tables I and II. [We designatc theorems by “T” and give each theorem 

two numbers, the first of which indicates the section in which the theorem 

js stated, this scction number of the thcorem is suppressed when references 

are made to it in the same section. (E.g. “TS-Ic” refers to Theorem Ic of 
section 5; if this reference is madc in the text of section 5, it is written 
simply “Tlc”.) Definitions are sometimes designated by “D”, with the 
same sort of double numbering. As we remarked in 4a, the sign “+” is 
prefixed to theorems, definitions, ctc., of special importance.] 

TS5-1. Ranges. a. Let G, be an arbitrary sentential formula, and ~S, 
its negation; then the range of ~S, is the complement of the 
range of S,. (The complement of the range of S, is the class of 
those value-assignments in the total range of S, which do not 
belong to the range of S,.) 

b. The range of the disjunction of two or more sentential formulas 
is the union of the ranges of the individual scntential formulas. 
(The union of sevcral classes is the class of all those elements 
which belong to at Icast onc of the classes.) 

c. The range of the conjunction of two or more sentential formulas 
is the intersection of the ranges of the individual sentential 
formulas. (The intersection of scveral classcs is the class of all 
those clements which belong to each of the classes.) 

15-2. a. S; is L-falsc if and only if ~S, is L-true, ~ 3S, is L-false if and 
only if G, is L-truc, (From Tla.) 

b. A disjunction of two or more sentential formulas is L-false if and 
only if each such member of the disjunction is L-false. (From 

TIb.) 
c. A conjunction of two or more sentential formulas is L-true if and 

only if cach such member of the conjunction is L-true, (From 
Tice.) 

Exercise. Show that T2 follows from Tl 

6. L-IMPLICATION AND L-EQUIVALENCE 

6a. L-implication and L-equivalence. In this scction we introduce two 
additional L-concepts, viz. the logical rclations of L-implication and L- 
equivalence. First of all, we provide an illustration based on Truth-table I, 
Sentence ‘A’ has for its range the first two cases, while the range of ‘A VB’ 
comprises the first thrce cases. From this we see that for each case in which 
‘A’ is true—viz the first and the second—'A V B’ is also truc. Hence we 
can conclude. ‘A V &’ from ‘A’ without any knowledge of facts. What we 
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do here is gencralizc this consideration to arbitrary sentential formulas S, 
and S,. If S, and S, are such that the Tange of &, is contained in that of S 
(ie. if for the value-bearing signs of S, and S, ‘cach value-assignment pu 
which 3; is true is also one at which S; is true), then we shall say that 
L-implies S, _L-implication is our explication (recall 1a) for the traditional 
concept which is usually called “implication” or “logical implication” oy 
“entailment”, and whose inverse is ordinarly referred to by such terms ag 
“logical consequence”, “‘deducibility” and the like In connection with our 
illustration above, we would now say that ‘A VB’ is L-implicd by ‘A’. 

+T6-1. a. A scntcntial formula which is L-implied by an L-true sententia) 
formula is itsclf L-truc. 

b. A sentential formula which is tautologously (i.e. in truth-table 

terms) L-implicd by a sentential formula that is a tautology js 
itself a tautology 

c. A sentential formula which L-implies an L-false sentential 
formula is itsclf L-false. 

+T6-2. a. An L-truc scntential formula is L-implicd by every sentcntial 
formula, 

b. An L-false sentential formula L-implics every sentential 
formula 

+T6-3. a. Every sentential formula L-implics itself. 
Transitivity of L-implication. If S, L-implics S, and G, 
L-implies S,, then S, L-implies S,. 

‘Now assume that two sentential formulas S, and S, are such that the 
conditional G,>G; is L-true. Then S, L-implies G,; for if therc were a 
valuc-assignment at which S; is true and S; false, then by Truth-table 1(4), 
line 2, the scntentia] formula S,> S, would be falsc—which is impossible, 
since S,> S, is presupposed to be L-true. Moreover, the converse holds, 
assuming &; L-implies S,, it follows that the sentential formula S)>, it 
L-truc, For otherwise there is a value-assignment at which S,>&, is false, 
i.e. at which (by Table (4), 2), S, is truc and G, is false, which contradicts 
our assumption that S, L-implies S,. Therefore: 

+T76-4. If S, and S, are arbitrary sentential formulas, then G, L-impliey 
, if and only if the conditional S,> G, is L-truc, 

Example, ‘Take the sentences ‘A’ and ‘AV B? of our initial illustration as instances of 
&) and G; respectively As we have segly the range of 'A" is contained in that of ‘VB’ 
ie, there is no value-assignment at which ‘A’ is true and ‘AV B' false, Hence, on the ont 
hand ‘A’ L-implies ‘A VB"; and on the other hand the conditional ‘A> AV’, being trut 
at every value-assignment, is itself L-truc. For a conditional is false only at the value 
‘TF, and this combination cannot occur here. 
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6-5. a. Asentential formula which L-implics S; and which also L-implies 
~G, is itself L-false. (From TS-la.) 

b. A sentential formula which L-implies its own negation is L-falsc. 
(From a and T3a.) 

We call S; L-equivalent (or: logically cquivalent) to &, just in case the 
range of G; is the same as the range of G). 

416-6. a. Two sentential formulas are L-equivalent if and only if each 
L-implics the other. 

b. Two sentential formulas are L-cquivalent if and only if at cach 
valuc-assignment either both are true or else both are false. 

416-7. Two sentential formulas S, and G, are L-equivalent if and only 
if the biconditional S;=S, is L-truc. 

Proof 1. Suppose 2; and 2; are L-equivalent Then they both have the samc range, 
i.e. at each of the possible valuc-assignments they arc cither both truc or else both false. 
But by Table 1(5), =; is thereby truc at every value-assignment; hence €/= <; is 
L-true. — 2. Take © : to be L-true, i.e. truc at every value-assignment Then there 
is no value-assignment which €; and @; have different truth-valucs, thus <; and <; 
have the same range, and are L-equivalent 

6b. Content. A sentence says something about the world in that it 
excludes certain cascs which are possible in themsclvcs. In so doing, the 
sentence informs us that the exclude cascs are not real cascs. The more 
cases a sentence excludes, the more it says. Hence it seems plausible to 
define the content of a scntcnce as the class of possible cases in which it 
does not hold, i.e. those value-assignments which do not belong to the 
range of the sentence. (In the sequel we shall not make extensive usc of 
this concept.) 
The essential character of logical deduction, i.c. concluding from a sen- 

tence G, a sentence &, that is L-implicd by it, consists in the fact that the 
content of G, is contained in the content of &; (because the range of S, is 
contained in that of ©,). We sec thercby that logical deduction can never 
provide us with new knowledge about the world In every deduction the 
range either enlarges or remains the same, which is to say the content 
either diminishes or remains the same. Content can never he increased by a 
purely logical procedure. 

To gain factual knowledge, therefore, a non-logical procedure is always 
necessary. This point is also brought out by considering the sort of 
sentences whose truth logic is able to establish, viz. the L-truc sentences: an 
L-true sentence excludes no possible case, and hence its content is null. 
Though logic cannot lead us to anything new in the logical sense, it may 

well lead to something new in the psychological sense. Because of limita- 
tions on man’s psychological abilitics, the discovery of a sentencc that is 
L+true or of-a relation of L-implication is often an important cognition. 
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But this cognition is not a factual onc, and is not an insight into the state of 
the world; rather, it is a clarification of logical relations subsisting between 
concepts, i.e. a clarification of relations betwecn meanings. Suppose 
someonc knows G; to begin with; and suppose that thereafter, by a laborious 
logical procedure, he finds that S, is L-implicd by S;. Our subject may now 
properly regard G, as known, but he may not count it as logically new: for 
the content of &,, cven though initially conccaled, was from the beginning 
part of the content of G,. Thus logical procedure, by disclosing S, and 
making it known, enables practical activities to be based on G,. Again, 
two L-cquivalent sentences have the same range and hence the same content; 
conscqucntly, they are simply different formulations of this common logical 
content. However, the psychological content (the totality of associations) 
of one of these sentences may be entirely different from that of the other. 

6c. Classes of sentences. We now cxtcnd to classcs of sentences and 
other sentcntial formulas the conccpts which up to the present hive been 
applicd to sentences. We regard a class of sentences conjunctively, i.e. we 
regard a class as expressing precisely what all of its scntences togcther 
express. Thus we say a class of sentences is truc just in casc cach of its 
member sentences is true. Such a class is therefore false if at Icast one of its 
members is false By the range of a class of sentential formulas we under- 
stand the aggregate of all value-assignments (to the valuc-bearing signs of 
all sentential formulas in the class) at which the class is truc, i.e. the totality 
of those valuc-assignments at which all sentential formulas of the class come 
out true. L-concepts whose definitions rest on the notion of range may now 
be carried over unaltered. On this basis the following theorcms result: 

T6-8. The range of a class of sentential formulas is the intersection of the 
ranges of the individual sentential formulas. 

From this, in view of TS-Ic, follows: 

+T6-9. A conjunction of two or morc sentential formulas is L-equivalent 
to the class comprising these sentcntial formulas. 

76-10. A class of sentential formulas L-implics each of its scntcntial 
formulas, and each of its subclasses. 

T6-11. A class of sentential formulas is L-true if and only if each of its 
sentential formulas is L-true. 

T6-12. a. A scntential formula L-implics a class of sentential formulas if 
and only if it L-implies cach sentential formula of this class. 

b. A class of sentential formulas L-implics a second class if and 
only if it L-implies each sentential formula in the second class. 

c. A sentential formula, or a clasgyof such formulas, L-implies a 
conjunction with two or moreJcomponents if and only if it 
L-implies each of these components. 
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6-13. A class of sentential formulas which contains both a sentential 

formula and its negation is L-false. 

Jf we say that certain sentential formulas L-imply another sentential 
formula or the like, we mean that the class of these sentential formulas 
L-implies the sentential formula in question, etc. 

J6-14. a. The class comprising the sentential formulas SG, and G,>G, 
L-implics the sentential formula G,. (By Truth-table 1(4).) 

b. If S; and S,;>G, are L-true, then G, is also L-true, (By a.) 

[6-15. The class comprising the sentential formulas S, and ~G, L-implies 
every sentential formula; and likewise the conjunction S,.~G, 
L-implies every sentential formula. (By T13 and T2b.) 

This last result is important in the treatment of deductive systems, e.g. 
axiom systems. If in such a system two contradictory sentences are deriv- 
able, the whole system becomes trivial inasmuch as any arbitrary sentence is 
thereupon derivable. 

6d. Examples. 1. From Truth-table I it is seen that the range of ‘A comprises the first 
two valuc-assignments (the first two cas while the range of 'B' comprises the first and 

third valuc-assignments Hence the intersection of these two ranges comprises just the 
ing the two sentences ‘A’ and ‘8’ there- 

fore L-implics each of the following sentences: a) ‘A.B’; b) ‘AV B"; c) ‘A> B'; d) ‘A=B’. 
—2. The part common to the ranges of ‘A' and of ‘A> B’ comprises just the first value- 
assignment alone; the range of *B* comprises the first and the third value-assignments. 
Consequently, ‘B" is L-implied by *A' and ‘A> B". (See T14a.) 

Exercises. 1. Show that T15 follows from T13 and T2b. — 2. Determine (by means of 
a truth-table for ‘A’, 'B", "C*) the range of each of the following four classes of sentences: 
a) ‘A *.c) CDA‘, 'BVC', x (AVE); 
d) '~B*.— 3. On the basis of your considerations in exercise 2 just above, determine 
which of the classes L-imply or are L-equivalent to what others. — 4, Show if a class K 
of sentences L-implics a class M of sentences and every sentence in X is true, then cvery 
sentence in M Do this using only the definition of “range of a class” in 6c and the 
definition of * plies’ in 6a; do not use the theorems. — 5, Show that, if the sentence 
‘A’ L-implies the sentence ‘8’, and ‘A’ is true, then ‘B* must betrue. Hint: use the results 
of exercise 4. — 6, Show that the sentence 'A" together with the sentence ‘B* L.-imply the 
sentence A.B" 

7. SENTENTIAL VARIABLES 

7a. Variables and sentential formulas. In mathematics variables have 
for centuries been used to great advantage for the purpose of representing 
relations betwecn numbers exactly and concisely. Thus e.g. the formula 
‘x2=3y+4’ uscs the number-variables ‘x’ and ‘y’ to express a relation which 
holds for certain pairs of numbers and not for others. Again, the formula 
‘x+y=y+x" expresses a universal numerical relation, i.e. one that holds 
for all pairs of numbers; it is a universal or generally valid formula (often 
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called an arithmetical law or an identity). If, when an expression is 
substituted for a variable of a given formula, there is produced another 
meaningful (but not necessarily true) formula, we say the expression is 
substitutable for the variable and call it a substitutable expression. The 
entities referred to by a variable of a formula are called the values of the 
variable. E.g. the variables ‘x’ and ‘y’ of the two formulas cited above have 
for their values numbers (more precisely, numbers of a certain kind—e.g, 
natural numbers—in accordance with the rules of the system in question), 
and numerical expressions (such as ‘6’ or ‘6+2") are substitutable for 
them; thus these variables are termed “numerical variables”. In mathe- 
matics the variables first used were numerical variables; later, however, use 
was made of variablcs whose values were entities of other sorts, c.g. functions, 
classes, operators and the like. Symbolic logic borrows the variable from 
mathematics, but employs it in a much more extended fashion. Symidolic 
logic admits as values of its variables entities of all possible kinds, e.g. 
things, classes, properties, relations, functions, propositions, etc. (Later a 
distinction shall be made between value-extensions and value-intensions, 
see 10b.) 

In our symbolic language system we shall use hereafter individual variables 
‘x’, ‘y’, etc., for which individual constants like ‘a’, ‘6’, ctc., arc substitutable; 
and also predicate variables ‘F’, ‘G’, ctc., for which predicates like ‘P’, ‘Q’, 
etc., are substitutable. By a sentential formula we shall understand an 
expression which is a sentence or which contains variables and becomes a 
sentence upon appropriate substitutions for these variables. E.g. ‘Pa’ is a 
sentence and hence a sentential formula; again ‘Px’, ‘Fa’, and ‘Fx’ are 
sentential formulas, since they go over into ‘Pa’ by appropriate substitutions. 
We make general use of the sign ‘G’ for sentential formulas. Later we shall 
become acquainted with other kinds of formulas, e.g. numerical formulas 
(expressions which designate numbers, such as ‘6+3', or which by ap- 
propriate substitution transform into such expressions, as in the case of 
‘x+3'), formulas for propertics, for relations, for functions, etc. Our 
present concern being only with sentential formulas, we shall often write 

simply “formula” in place of “sentential formula”. 
7b. Sentential variables. Now we introduce as the first kind of variable 

in our language system the sentential variables (or propositional variables) 
‘p’,‘q, ‘r’, etc. We agree that arbitrary sentential formulas of our Janguage 
are substitutable for these sentential variables. Regarding such substitution, 
we understand that at every occurrence of a sentential variable in a given 
sentential formula the same expression is substituted. E.g. in ‘pVq>qVp" 
the same formula must be substituted at both occurrences of ‘p’; similarly 
for ‘g’ (what is substituted for ‘g’ need not necessarily be different from what 
is substituted for ‘p’). A sentential formula which contains at least one 
variable (later (9a) we shall say more precisely: a Stee variable) is called 
open; otherwise, closed. The closed sentential formulas are the sentences. 
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(in other language systems, it sometimes happens that open sentential 
formulas are also admitted as sentences.) Every closed sentential formula 
that can be derived from an open sentential formula G, by substitution is 
said to be a substitution instance (briefly: an instance) of S,; if S, is a closed 
sentential formula, we count G; itself as its only substitution instance. 
We say &', G,’, etc., are corresponding substitution instances of S,, S,, 

etc., if SG,’ is obtained from S,, S,’ from G,, etc., by the same substitutions 
(i.e. for each sentential variable, the same expression is substituted at every 
occurrence of this variable in G,, in G,, etc.). 

Individual constants and individual variables are callcd individual signs. 
Asentential formula which consists in an n-place predicate and n individual 
signs is said to be a full formula of the predicate; and further if no individual 
variables appcar the sentential formula is said to be a full sentence of the 
predicate. 

Sentcntial constants and scntential variables are called sentential signs. 
A sentential formula which is either a sentential sign or a full formula of a 
predicate is called an atomic formula; and if further this formula is a sentence, 
it is called an atomic sentence. A sentential formula is termed a molecular 
compound of other formulas if it is constructed from thesc other formulas 
by means of the connective signs previously considered. A sentential 
formula which is either an atomic formula or a molecular compound of 
atomic formulas is called a molecular sentential formula, and a molecular 
sentence if additionally it is a sentence. We say that G; occurs molecularly 
in S, in case G, and G, are such sentential formulas that G; is a molecular 
compound involving S; and possibly other formulas not containing S, as 
a part. [Example: ‘Px’ occurs molecularly in ‘AVPx', but not in 
“AV (x)Px’.] 

The sentential variables are included among the value-bearing signs. 
Their possible values are the possible values of sentential constants, viz. 
the truth-values T and F. Suppose S; is a molecular sentence with n 
different sentential constants; and suppose G;, is an open sentential formula 
obtained from G, by replacing the sentential constants by n different sen- 
tential variables. If now G, is true at a certain valuc-assignment to the 
sentential constants, then GS, is cvidently true at the same value-assignment 
to the sentcntial variables; and indecd, if S, is L-true, then S; is too. 

It is also evident that truth-tables can be applicd directly to the sentential 
variables of a molccular formula. Thus e.g. since by Table III(3) the 
sentence ‘AV~ A’ is L-true, the open sentence ‘p V~p’ is also L-truc; and 
this result can be seen at once by a truth-table analogous to the one 
cited, but with ‘p’ in place of ‘A’. 

+T7-1. Substitutions. Suppose S, and G, are arbitrary sentential 
formulas; and suppose G;’ and G,’ arc obtained from S, and G, 
respectively by the same substitutions for one or more (but not 
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+TT-1__ necessarily all) of the sentential variables appearing in the latter. 
Then it is the case that: 

a. If G, is Ltrue, then G,’ is also. 

Proof. Take © to be L-true, i.e. true at cach value-assignment to the value-bearing 
signs that appear in 6. Suppose G/' is obtained from 6; by substituting the sentential 
formula Ge at cach of the occurrences of some one sentential variable (say ‘p") appearing 
in Gj, The value-beanng signs of Gx now appear among the value-bearing signs of 6’. 
Suppose a value-assignment is made to the value-bearing signs of 6’. This leads, in 
particular, to an evaluation of Sas either T or else F. But since G; is true at every value. 
assignment, no matter whether ‘p’ is assigned the value T or the value F, it must be that 
G,’ is true at every value-assignment (which necessarily fixes the newly added value- 
bearing signs of S,), no matter whether these assignments impart to ©, the value T or 
the value F. Thus 5’ is L-true. 

b, If G, is a tautology, so also is S,’. (This is a special case of a.) 
c. If G, is L-false, so also is S,’. (By analogy with a.) 
d, If G,’ is L-indeterminate, so also is S,. (From a and c.) 
e. If G, L-implies G,, then also G,’ L-implies G,’. (From a and 

T6-4.) 
f. If G, and G, are L-equivalent, so also are S,' and G,’. (From 

a and T6-7.) 

Examples related to Tib. The formula ‘pVg>gVp' is a tautology. Hence the 
formulas ‘pVA> AVp' and ‘(p.r)V(A.~p)>(A.~p)V(p.r)’ arc also tautologies. 

8. SENTENTIAL FORMULAS THAT ARE TAUTOLOGIES 

8a. Conditional formulas that are tautologies. The theorems below list 
sentential formulas that are tautologies. In each case, the tautological 
character of the formula can be established by means of a truth-table that 
has sentential variables ‘p’, ‘g’, etc. where formerly ‘A’, ‘2’, etc., appeared. 
A first reading of this book requires only that attention be given the more 
important formulas marked ‘+’. 

T8&1. The following formulas are tautologies, and hence L-true: 

+a, pV~p. 
b. ~pVp. 
c. ~(p.~p). 

T8-2, Let ©,>G, be any of the conditionals introduced below [viz. a(1) 
through i(2)}. Suppose G,’>G,’ is obtained from 6,>G, by arbi- 
trary substitutions. Then each of the following holds: 

A. G,>G, is a tautology, and hence L-true. 
B. S,'>G,' is a tautology, and hence L-true. (From T7-16.) 
C. G, L-implies S,. (By T6-4.) 
D. G;' L-implies S,’. (By C, in view of T7-1d.) 
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182 E. If S, is a conjunction (whence the whole conditional has the 
form &;.S 1S), then a. is L-implied by the class comprising 
the formulas S, and &,; and similarly for formulas obtained 
from these three by corresponding substitutions. 

a. +(1) p> pVg. 

2) q> pVa. 
Q) q > (p>9)- 
(4) ~p > (p>9). 

b. +(1) p.q> p. 

Q) p.q@>q. 
+c pem~p>q. 

a. +(1) (pVg).~p > @. 
+(2) (pVq).~q > p. 
+(3) (p>q).P > 4. 

(4) p > (p>) > 4). 
(5) (p>q).~q > ~p. 

e +(1) (p=9)>(p>9). 
+(2) ( 

(3) ( 
(4) ( 
(3) ¢ 
(6) ( 
(7) (p=q)- 
(8) (p= 

f£ (I) (p> )>(pVr>qVP). 
(2) (p>q)>(p.r>q.r). 
(3) (p>9)> (> 7)>(r>9))- 
(4) (p>9)> ((9>1r)> (p> 7). 
(3) (p>q).(pVr) > gVr. 

+(6) (p>9).(g>1) > (p>r). 
(2) (p=q)-(p=r) > (=r). 

+(8) (p=9).(g=r) > (p=r). 

ge (1) (p=q)>(pVr=qVr). 
@ He > (Pp - 
aa ae Pr). 

oe =@)> ((r>p)=(r>9)). 
(S) (pP=9)> [(P=)=G@="))- 

kh. (1) (p>9)-(7>5) > (pVr>qVs). 
(2) (p>q).(r>s).(pVr) > qVs. 

i (Dg > (v= 2.9). 
(2) ~q > (p = pV4)- 
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In connection with using the conditional formulas listed just above in T2, 
the subsidiary assertions C and D have special importance. in each casc, the 
first member (or a substitution instance thercof) L-implics the second 
member (or its corresponding substitution instancc). Thus it is possible 
in a deduction (derivation, 8d) to infer the latter formula from the former. 

From a(l) and (2), e.g, it appears we may join to a given sentential 
formula another arbitrary one as a member of a disjunction. From a(3) 
and (4) conditional formula is L-implicd by its consequent, and also by 
the negation of its antecedent. (Hence a conditional scntence is true if its 
consequent is true, and again, true if its anteccdent is false; which also can 
be secn from Truth-table 1(4).) From b(1) and (2): a conjunction L-implies 
cach of its members. From c: a sentential formula and its negation together 
L-imply any arbitrary sentential formula (cf T6-15). From d(1) and (2): 
a disjunction and the negation of one of its members together L-imply the 
other member. Regarding d(3): this supports an important type of infer- 
ence, viz. from a conditional together with its antecedent to the consequent 
(sometimes called modus ponens; cf. T6-14a). Regarding d(5): this allows 
a similar inference from a conditional together with the negation of its 
consequent to the negation of the antccedent (sometimes called modus 
tollens). From e(1) and (2): a biconditional L-implies the two conditionals 
that can be formcd from its members. From e(5) and (6): a biconditional 
together with onc of its members L-implies the other member. From e(7) 
and (8): a biconditional togcther with the ncgation of one of its members 
L-implies the ncgation of the other member. From f(1) and (2): in a given 
conditional it is possible to join to cach member the same formula as a 
member of a disjunction, or as a member of aconjunction; and from f(3) and 
(4) likewise, this added formula may be joined as the antecedent of a condi- 
tional, or as the consequent (in this event, the original members exchange 
position), From (6): conditional is transitive. From g(1) to (5)° in a 
given biconditional the same formula may bc joined to both members either 
as member of a disjunction or of a conjunction, or as first or second member 
of conditionals, or as first or second members of biconditionals. From i(1): 

an arbitrary truc sentence can be conjoined to a given sentence without 
changing its truth-value; and the conjunctive addition of an L-true sentence 
does not change the content of the original, i.e. the result is L-equivalent to 
the original sentence. Finally, i(2) permits an analogous claim for the 
disjunctive addition of a false (or L-false) sentence. 

8b. Interchangeability. We say an expression Y, is interchangeable with 
an expression Y%, just in case the following holds for arbitrary scntcntial 
formulas 2, and &,: if S, contains %; and S, is obtained from &, by 
replacing YU, by a7 at One or more (but not neccessarily all) occurrences of 
YU, in S;, then Se S; is truc. We say %, is L-interchangeable with %, if 
additionally S;=S, is always L-true, i e. S; and &, are always L-equivalent. 

The truth-value of a sentence involving just one of our connective signs is 
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uniquely determined by thc truth-values of its components, with the aid 

of the truth-table for the connective. (It is for this reason that our conncc- 

tives are also called “truth-functions”.) Therefore the truth-valuc of an 

arbitrarily compounded molecutar sentence is also uniqucly determincd by 

the truth-values of the atomic sentences occurring in it. Suppose S; is a 

molecular sentence in which S, occurs as a component (S; may be an atomic 
sentence or a compound molecular sentence). If now this S, in S; is inter- 
changed with any other sentence S, whose truth-value is the same as that 
of S Sp then from our previous remarks it is clear that the truth-valuc of S, 
remains unaltered. In effect’ a scntential formula is translated into one 
L-equivalent to it when any component formula of the original is inter- 

changed with any formula L-cquivalent to that component. This important 

result is proved morc exactly in the following theorems. 

78-3. Suppose ‘...p...’ is one of the following formulas: ‘~ p 
‘per’, ‘ep’, ‘prr, ‘r>p’, Suppose ‘, 
and ‘...8..." are corresponding formulas, with ‘g' (or 
respectively) standing in place of ‘p’, Then the following hold. 

> [6.2.5 
” L-implics ‘(. 

L-true, 

)' is L-truc, 
p... together L-imply *...g...’. 

B...)]’ is L-true. 
B L-implies * B...)'. 

g (A= 8).(...A...) > (..B..)" is Letruc. 
h. ‘A= and ‘A...’ together L-imply ‘.. 8... 

Proof. We state a proof for the formula ‘pVr’; en for the other formulas are 
analogous -~(a). From T2g (1), or from the truth-table, —(b). From (a), by T6-4, 
—() (p=q) (pV1)>qVr' is a tautology. -(d), From (c), by T6-4 and T6-9.—(c) 
through (h) follow from (a) through (d), by T7-1. 

[It is to be noted that assertions analogous to (2) and (b), with ‘>" instead of "=" in both 
places, do or hold except in certain cases—of which several are specificd in T2f (1) (2) (3)-] 

T8-4, Suppose *...p..." is a molecular sentential formula containing ‘p’, 
Suppose A...” and *...8...” result from ‘...p...’ by the intro- 
duction of ‘g’ or ‘A* or'B* respectively in place of ‘p’, Then assertions 
(a) through (7) of T3 hold. 

Proof. A proof of (b) results from applying T3 first of all to the smallest component 
formula of *...p...' that contains ‘p', and then to successively larger component formulas 

If is reached. These successive stages make usc of the following tauto- 

D> (r=) > (Vi = eyo 
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IA proof, with the formula ‘“(r.~p)V(p.s)' taken for ‘.. p...’, will illustrate these con- 
siderations. First, beginning with “(p: we see by T3b that: (1) ‘p=q' L-implies 
“~p=~q'. Next: (2) ‘p=q’ L-implies ’. This last yiclds, by substitutic mn 
Q)'~p=~q" ‘r~perimq’. From (1) and (3), by T6-3b. (4) ‘p=q" L-imy 
‘mw perng . by T3b (5) pee implies ‘p.t=.s" By (=), with substitu 
tion: (6) ‘r.~p and 'p.s= ‘ogether L-imply '(r.~p)V(p-s)=(r.~q)V(q.s)’. r y 
From this lst in view of (4) and (3), we Raves ‘pq’ Leimplies 1 -~p)V(p.)eC ~@V 
(q.s)', the biconditional desired.) To finish the original proof, we necd only note that 
(a) follows from (b) by T6-4, and that other parts of the theorem follow in analogy with 
TB. 

+T8-5, Suppose S, and G; are L-equivalcnt, and suppose &, occurs in 
&, one or several times, but only molecularly. Now let S, be 
obtained from S, by interchanging &, with S, at one or more (but 
not necessarily all) of the occurrences of S, in S,. Then S, 
and G;, are L-cquivalent. 

1, by T4b. Hence 
rare L-cquivalent, 

jis l-true This formula L-implies <, 
in view of T6-la. By T6-7, therefore, = a1 

Proof. To begin, & 
E,= G1 is also L-true, 

TS tells us that L-equivalcnt sentential formulas arc L-interchangeable 
in places where they occur molccularly. Later we shall state a morc general 
theorem on L-interchangeability (it is T15-3) that has TS as a special case. 

8c. Biconditional formulas that are tautologics. 

T8-6. Let G,=G, be any one of the biconditional formulas (a) Taroiige 
(q)(5) introduced below. Suppose S;’=&,' is obtained from S,=&, 
by arbitrary substitutions. Then the following hold: 

A. G,=G; is a tautology, and hence L-truc 

B. G/'=G,’ is a tautology, and hence L-true. (By T7-1b.) 

C. G, and G, are L-equivalent. (From (A), by T6-7.) 
D. G/ and G;’ are L-equivalent. (From (B), by T6-7.) 
E. G, and G, are mutually L-interchangeable in molecular com- 

pounds. (From (C), by TS.) 

F. G,’ and G,’ are mutually L-interchangeable in molecular com- 
pounds. (From (D), by TS.) 

a. p=p. 
+b p=~np 

c p=pVp. 

d. p=p.p. 

e, Commutative laws. 

+(1) pVq = Vp. 
+2) p.g = QP. 
+@) ¢ 
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T86 f. +(1) (p 
Q) 

g. Duality laws. 

+(1) ~(pVq) = ~P.~g. 
2) ~(a1Vp2V. Vp = ~Pye~Pae 

h, Negation laws. 

+(1) ~(p>9) = P.~g. 

). 
(p> ~9).(~q>). 
(~p>4).(9> ~p). 
(p.~q)V(~p.9). 

9) = (pVq).(~PpV ~9). 
i, Transposition laws. 

+(1) (p>q) = (~9> ~p)- 
) = (~9>~). 

(8) (p> ~gVr) 
j. Transformations of the conditional. 

(1) (p>4q) 
#2) (p>4) 

(S) (p>9) = (pVq = 9). 
k. (1) p = (pVq).(pV ~9). 

2) p = (p-9)V(p.~9)- 
L  () (p> @>n) -q > 1). 

@) (p>@>") = >>»). 
m. Associative laws. 

+(1) (pVg)Vr = pV(qVr). « 
+) (p.9)-r = p.(q.r)- 

*™ Pr 

wa VO Pye 
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T8-6 n. Distributive laws. 

+(1) p.@Vr) = (p.9)V(p.7)- 
(2) B.(91V92V... Vn) = (p-91)V (2-92) VV (PG) 
3) (1 VP2V..-V Pm)«(91 V92V-- Van) = (21.91) V (71-42) 

V. .V(P1 29a) V (P2-91) V «+ V Pn 91) V (Pme2) Vs. V 
(Pin+Qn), Where the conjunctions on the rightrepresent 
possible pairs comprising one p-variable and one 
q-variable, 

+(4) pV(q.r) = (pVq).(pV"). 
(5) PV (G1+420--+-9n) = (PV91)-(PV92).....(PVGn)- 
(6) (Pa ePaes-+sPmdV (G19 200+9n) = (Pr VG1)« (Pi V2) ee 

(P1 Vn) «(22 V 91) «++++(Pm¥91)+(Pm V G2) ++0++(Pm Vn), 
in analogy with (3). 

(7) pV@= (pVq = pV"). 
(p>4).(p>1). 

9) (p> G1edae- Gn) = (P>91)-(P> 92) (P> Gn). 
(10) (p > gVr) = (p>g)V(p > 1). 
(11) (p > 91V92V...V an) = (P>91)V(P> 92) V..V(P> an). 
(12) p> (g>r) = (p>q)> (p>). 
(13) p>@=r) = ((p>g)=(p>")). 

0 (1) (p.g > 1) = (p>r)V(q>P). 
(2) (PyePaeeeePn > 1) = (Pr>7)V (P22 VV (Pp?) 
Q) (pVq > r) = (p> r).(g>"). 
(4) (PiVP2V.VPn > 1) = (P21) «(P22 1) 0-6 (Pa>? 1): 

(p> @=r)) = (2.9 = p.r). 

(8) (p>4-r) 

P.(qV~p)- 
(5) P.q = p.(p>4)- 

Our application of the tautological biconditionals listed just above 
depends heavily on two features, viz the two main components are L- 
equivalent, and these two components arc mutually L-interchangeable in 
molccular compounds. In particular, (b) permits the suppression of double 
negation signs. Again, (e)(1) to (3) permit the commutation of the com- 
ponents of a disjunction, of a conjunction, and of a biconditional. The 
laws (g)—these are sometimes called De Morgan's laws—and the laws (h) 
show how the negations of certain compounds are transformed. The laws 
(i) allow what is called transposition (or contraposition); in particular, 
(i)(1) says that the components of a conditional arc exchanged and negated. 
The biconditional (j)(1) states the interpretation of the implication sign 
given earlier. The laws (m) state that disjunction and conjunction are 
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associative’ when a disjunction (or conjunction) has three components, the 
way they are put together may be altered arbitrarily. Thus, in these cascs 

rentheses may be omitted-and c g expressions written simply ‘AV &VC" 

or ‘A. B.C’; of. 3¢, rule (3) for omission of parentheses. [The same remarks 

hold true when the disjunction (or conjunction) has more than three 

components.] Finally, (n)(1) and (4) permit distribution through paren- 
theses. These two laws are analogous to the arithmetical theorem 
Ox (yt DEX YbeZ"; however, there is this difference: while arithmetic 

mits a multiplying-out (as in the theorem just cited) and not a similar 

adding-out, here both (1) and (4) hold. [In (1), conjunction corresponds to 

multiplication; in (4), disjunction corresponds to multiplication.] 
8d. Derivations, The L-implications set forth above can be utilized in 

deducing from certain assumptions (the “‘premisscs”) a result (the “conclu- 

sion”). By a derivation with given premisscs we will understand a sequence 

of sentential formulas which begins with the premisscs and which continucs 

through other scntential formulas one at a time, each step being a formula 
that is L-implied by the ones preceding it. 

Example. Suppose we know (or assume) that 'A,B>C" is true, that ‘A’ is true, and 
that ‘C’ is false. What, then, can be said about the truth-valuc of “B"? This question 
can be answercd either by a truth-table (cf. 6d, exercise 3) or by a derivation We give 
below an Illustrative derivation, (To the left of a linc in a derivation we sometimes note 
which of its preceding formulas were uscd, and what theorems were applied, to produce 
that line of the derivation.) 

Derivation. Premisses: 1) A.8>C (1) 
2A (2) 
306 (3) 

(1) T61(1) A>(B8>C) (4) 
(2)(4) T6-14a B>C (5) 
6) Téi(1) ~CDWB (6) 
GX6) T6-14a ~B ) 

Hence, ‘~ 8" is L-implied by the premisscs, ic on the basis of our original assumptions 
“B’ is falsc, 

Exercises, Transform each of the following two sentences into an 1 -cquivalent 
sentence which has no negation sign before a parenthesis (hint usc theorems T6b, a(1),(3) 
and h(1),(3)): 1. '~[A.(B> C)]'. — 2. '~[(A=B)V(C.~ D)}" — 3. Suppose that "(A> 
B.C)=D! and ‘8’ are truc, and ‘D’ is falsc, make a derivation to determine the truth- 
values for ‘A’ and ‘C" from these assumptions —4. According to T4 the sentence 
‘(D=~B.C)>E" is L-implied by ‘A= B" and (D=~A.C)>E". Show this by a deriva- 
tion which uscs only T3, and not T4. (This L-implication can also be established by 
means of a truth-table, how many lines must that table contain”) — 5. Give a derivation 
for each of the following cases of L-implication. a)'~ DVB’, 'B>C' and ‘A> D' L-imply 
‘~wAVC" (hint. use T6j(1), T2(6)); ) ‘AV(B.C)' and *~B" L-imply ‘A’ (usc, among 
others, T6n(6), T2d(2)), c) *B> A" L-implies ‘~~ B> A’ (use T3), d) ‘A>~A" L-implics 
‘mA’; €) '~(A>C)' and ‘C’ L-imply ‘D'. 
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9. UNIVERSAL AND EXISTENTIAL SENTENCES 

9a. Individual variables and quantifiers. As was previously indicated, 
we use ‘a’, ‘h’, ctc. as individual constants, and ‘P’, ‘Q’, ctc. as predicates, 
Further, from atomic sentences (c.g. ‘Pa’, ‘Rbc’) and the familiar connectives 
we form compound molecular sentences (e.g. ‘PaV~ Rhc’). Now suppose 
we have a sentence dealing with an individual a, ie a sentence ‘...4..4., 
in which ‘a’ occurs one or morc times (e.g. 'PaV Rah’) Suppose further we 
wish to state that what this sentence says about @ does in fact hold for every 

individual in the domain of individuals to which @ belongs. Then we say 
“for every x, XX” and write “(x)(...x..x.)'. [For the particular 
sentence cited above, we write ‘(x)(PxVRxb)’. Thus, the sentence 
*(x)(PxV Rxb)’ means “for every individual x, x has property P or x bears 
relation R to 4”) Instcad of ‘x’, any of the letters ‘u’, ‘v’, ‘w’, ty’, 
*z' can be used as well. We tcrm ‘x’, ‘u’, ‘vc’, ‘w’, ‘y’ and ‘z* individual 
variables, \ndividual constants and individual variables are called individual 
signs, The whole sentence ‘(x)(.. is known as a universal sentence, 
The expression ‘(x)’ at the head of a universal sentence is called a universal 
quantifier, and the parenthetical expression following it is called the operand 
of this quantifier [E.g. the operand of the universal quantificr ‘(x)’ in the 
universal sentence ‘(x)(PxV Rxbh)' is ‘PxV Rxh’.] 

Jf we wish rather to state that what the sentence *...a...4. ys about @ 
docs in fact hold for at /east one individual of the domain (leaving open the 
question whether a is that individual), we again employ a variable, c.g. ‘x’, 
saying “for at least one x, X.X...)'. Other 
readings for *(3x)(. , and “there is an 
x such that ...x. The whole sentence ‘(3x)(.. )’ is called an 
existential sentence. The expression ‘(3x)’ at the head of an existential 
sentence is called an existential quantifier, and the parenthetical expression 
following it is called the operand of this quantitier 

Our explanations above of universal and existential sentences indicate 
that the sense of these scntences depends on what is taken as the domain of 
individuals. \n conncction with any application of the symbolic language, it 
must be established what this domain is. The domain can be fixed at will; 
and in particular, it may be finite or infinite. However, it is customary to 
assume that the domain is not cmpty, ic there is at least one individual in 
the domain. Another frequent presupposition is that the domain is so 
chosen us to have a specified number of individuals in it. 

A sentential formula having the structure of cither of the two special 
sentence forms just described is called a wnirersal formula or an existential 
formula, as the casc may require. Formulas of these two types can, of 
course, appear as components in compound formulas. In this connection 
again, it is important to have rules which permit the omission of parentheses, 
We give two such rulcs below, and regard them as continuing thc list begun 
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in 3c with rules (1), (2), (3). The first of these new rules, rule 4, actually 
applics to certain other sorts of formulas besides the universal and existential 
ones. Hencc it is convenient to phrasc this rule in a more gencral fashion 
To this end we usc the word “‘opcrator’’, understanding by it one of ourtwo 
quantifiers or one of certain other expressions to be explained later (in 33 

and 35). 
It is considered permissible to omit the parentheses that enclose a com- 

ponent formula S, of a given formula provided onc of the following 
conditions is satisfied: 

4. S, consists of an opcrator (of any kind) together with its operand. 
[E.g. S; may be a component of a compound, as in ‘~ (3x)(?xV Qx)' or 
+A, (x)(PxV Qx)'; again, S, may be the operand of an earlicr operator, as 

in ‘(3y)(x)(Rxy)"] 
5. G, is the operand of a universal or cxistential quantifier and is the 

smallcst scntential formula following that quantificr. [E.g. ‘(x)Px', 
“(x)~ Px’, (3x) ~(»)~ (3z)T xyz’; in the last of these three formulas, rule (5) 
permitted omission of three pairs of parentheses and rule (4), two.] 

Onc should note the difference between the sentence ‘~ (x)?x’ (read: “not 
every individual has property ?”) and the sentence ‘(x)~ Px’ (read: “every 
individual has property not-P", i.e. “no individual has property P”). 
We say that an occurrence of a variable (either an individual variable or a 

variable of the other kinds to be discussed later) is bound by a quuntifier, and 
for short call the variable a bound variable, provided it is in a quantificr or 
is in the operand of a quantifier that contains the same variable. A variable 
which at a certain occurrence is not bound is said to be free at this occur- 
rence. An expression with no free variables (i.c, an expression which 
contains no variables or clsc only bound variables) is called c/osed. An 
expression with at least one free variable is called open. An open sentential 
formula with n different free variables is said to be n-place, or of degree n. 
The closed sentential formulas arc the sentences of language A. 

9b. Multiple quantification. Thc sentence ‘(x)(Px V Rxb)’ says something 
about the individual 4, viz. it ascribes to b a certain property (in the broad 
sense of the word “property” adopted in this book), To assert that every 
individual of the domain has this property, we employ a sccond variable 
and a sccond quantifier with this variable, and write ‘(y)[(x)(PxV Rxy)]’. 
To asscrt that this property attaches to at Icast one individual of the domain, 
we procecd similarly and write; ‘(3 y)[(x)(PxV Rxy)]’. It should be recog- 
nized that rule (4) of 9a permits the omission of the square brackets in these 
two formulas. 

The sentences ‘~(x)Px’ and ‘(3x)~ Px’ say the same thing: for if not every 
individual has property P, there must be at Icast one which fails to have it, 
and conversely, Again, the sentences ‘~ (3x)Px" and ‘(x)~ Px’ say the same 
thing: for if not at Icast one individual has property P, then every individual 
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fails to have it (ic. no individual has property P), and conversely. We will 
see later that the two pairs of sentences mentioned here are pairs of L- 
cquivalent sentences. 

9c. Universal conditionals. Of spccial importance for the language of 
science arc universal sentences with operands in the form of a conditional. 
Such sentences are called universal conditionals. E.g ‘(x)(Px>Qx)' has 
this form. Since *(x)(Px> Qx)' and ‘(x)(~ PxV Qx)' say the same thing, 
the sentence ‘(x)(Px> Qx)' is true provided that for evcry individual, at 
Icast one of the following conditions holds: |. the individual is not P (i.e. 
docs not have property P); 2 the individual is Q (ie. has property Q), 
{t may happen that a certain individual c is not P, in this event, so far as 
the truth of ‘(x)(Px>Qx)’ is concerned, it is a matter of indifference 
whether ¢ is Q or not. However, if any individual is P, then it must also 
be @Q if the sentence “(x)(Px> Qx)' is to be true. For if individual c, say, 
were P but not Q, then ncither condition (1) nor condition (2) would hold 
for ¢; thus '~PeV Qc’ would be false and so, consequently, would the all- 
sentence under discussion. Hence this all-sentence ‘(x)(Px> Qx)’ states: 
“For every x, if x is P then x is Q”. Notice here that the if-then translation 
is well suited to the universal conditional, even though it is not always 
adequate for the simple conditional ‘A> & (cf. 3b). Another reading for 
“(x)(Px> Qx)' is: “All P is Q". Most of the laws of sciencc—physics, 
biology, cven psychology and social scicnce—can be phrased as conditionals. 
E.g a physical law that runs something like “if such-and-such a condition 
obtains or such-and-such a process occurs, then so-and-so follows” can be 
rephrased as “for every physical system, if such-and-such conditions 
obtain, then so-and-so obtains”. 

If a sentence of the form “‘all...are..."* is to be translated into the symbolic 
language, notice should be taken of the following remarks, Generally, such 
a sentence is to reccive the symbolic formulation ‘(x)(Px> Qx)’. However, 
if the first predicate of the sentence (i.e. the one following right after the 
“all” and receiving the symbol ‘?") serves merely to characterize the domain 
of individuals in view—so that it necessarily attaches to each individual—, 
then we can suppress this first predicate and formulate the translation simply 
as ‘(x)Qx'. Predicates of this kind—called “universal words"—are neces- 
sary in the word-language to fix the domain in respect to which the word 
“all (or such words as “each”, "a", and the like) is to function (cf. 
[Syntax] §76). Such predicates are not necded in a symbolic language, 
whcre it is presupposed that each variable employed has a determinate 
domain of values, for individual variables, this domain is the domain of 
individuals of the language in question. Examples (cf. the list of predicates 
in 2c): 1. The domain; things (characterized by the universal word “thing”). 
The sentence “All books arc bluc” is translated *(x)( Book(x)> Blue(x))’; 
on the other hand, “All things are bluc” is rendered ‘(x)@lue(x)’. — 2. The 
domain: natural numbers. A sentence running “For each prime number 
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there is..." becomes ‘@)[Prime()> y)(..-)]'; whereas “For each natural 

number there is a greater” is written simply "GGG, xs 

Pe siag Translate the following sentences into the word-language’ 1. ‘Mi(a)V 
2. *(x)(MIQ)V Fix)". — 3. *Gr(5,3).Gr(5,2)" — 4. *Gr(5,3)> Gr(5,2)". — 5. 

eG ces 3)> Gi (x,2)) - 6, *Prime(3).Gr(3,2).~ Even(3)". - 7. ‘(x)[Prime(x).Gr{x2)> 

~ Even(x)]'. -— 8. "(ax)(Prime(x).Gi(x,3))" *Sq(9,3)". — 10. *(3x)Sq(x,3)". — 11. 
LGx)Sa(3,x)' “there is (in the domain of natural numbers) no square root of 3”. 
12 “GU~ Oa — 13, “)[Gy)Husl.x)> FIG)". 

wing sentences into the symbolic language. (The words “thing™, 

over in the translation )—14, —15. “There is a blue (thing)”. 
very (number) is cither even or not even", —17. “There is a bluc book" 

(conjunction). — 18. "Every book is blue”. — 19. “There are (numbers) x and y such 
that x is the square of y", — 20, “There is no (number) which is the immediate pre- 
decessor of zero" (usc an tential quantifier), — 21, “No (number) is the immediate 

sdecessor of cero” — 22. “tq is the father of someone”, or “there is 
‘a (man) such that a is his father” thers are male” (ic “for every x, if x is the 
father of somcone, then x is male"). — 24. “For cach square number there is a greater” 
(use onc universal quantifier and two existential quantifiers). 

Od. Translation from the word-language. In connection with translations 
into the symbolic language, it is to be noted that universality is not always 
expressed i in the word-language by terms like “each”, “all”, etc; sometimes 
universality is also expressed simply by the definite or indefinite articles 
("'the”, “‘an"), though these words do not ordinarily have this significance. 
When articles arc so uscd, it can only be gathered from the context that 
universality is intended. E.g. the phrase “the lion” has a universal sense in 
the sentence “the lion is a beast of prey”, but not in the sentence “the lion 
is now fed”. The first sentence here means “‘all lions are beasts of prey” and 
hence is to be translated into a symbolic sentence like ‘(x)(Px> Qx)'. 
The second sentence means “this object a is a lion, and a is now fed"”— 
symbolically, ‘Pa.Sa’. Again, “a lion” expresses universality in the 
sentence “a lion is a beast of prey”, but just cxistence in the sentence 
“Charles is shooting a lion". The first of these two sentences means “the 
(or: every) lion is a beast of prey”, and hence is rendered ‘(x)(Px> Qx)’. 
‘The second sentence states “there is an x such that: x is a lion and Charles 
is shooting x", and so receives a symbolic translation like '(3x)(Px. Rax)’. 
‘There arc still other words, e.g. “anything” and “anyone”, which have this 
dual usc—serving to cxpress universality in some cases, and existence in 
others. To produce a correct symbolic translation of a sentence containing 
words like “a”, “the”, “something”, “anyonc”, “nothing”, ctc., it is best 
first to expose the sense of the sentence by paraphrasing it so that expressions 
such as “for cvery x" and “there is an x" appear in place of the words 
mentioned. 

Exercises. Translate the following scntences into the symbolic language. Besides 
the signs specified in 2c, use the following: 1. Individual constants. For “Charles’ 
use ‘a’; for “the table", use “b'. 2. One-place predicates. For “is at home", use “H’. 
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3, Tworplace predicates, For "'sces", use ‘S"; for “lies on", use “L'; and for “belongs 
use "BE 1¢ given sentences involves at least one quantifier. — 1. “Charley 

—2. "Charles sees a blue book”, —3. “Something is lying on the 
table” — 4. “If something is lying on the tuble, it belongs to Charles". — 5. “If some. 
thing is lying on the table, Charles is at home", [Note the difference between (4) and 
(5), which the word-language discloses only by the "it" in the second clause of (4); because 
of this “it”, the operand of the quantifier in (4) must include the whole sentence, whereas 
that of the quantifier in (5) comprises just the first clause of (5).]—6. “If any 
(number) is smaller than 4, it is (also) smaller than 5" (use “for every x"). —7. “If any 
(number) is greater than c and smaller than d, c is smaller than d"* (use " note 
the difference from (6), which has an “it” in the second clause) — 8, “If one (number) 
is the predecessor of another, it is smaller than the other “If one number is the 
predecessor of unother, then it or the other is even”. — 10. “a is a friend of a brother of 
e” (ic, “there is a (third man) such that.,.”) —J1, “9 is a square number", (i.e. “9 ig 
thé square of some (nuniber)"), — 42, “Zero is not greater than any (number) 

10, PREDICATE VARIABLES 

10a. Predicate variables. According to our treatment of the universal 
quantifier and the cxistential quantifier, a sentence of the form *(x)(...x...)’ 
is truc if and only if the sentential formula ‘...x...’ holds for every individual; 
and a sentence of the form “(32)(e.)” is true if and only if the formula 

.x...” holds for at Icast one individual. 
Now, it is easy to see that the sentence ‘(x)Px> Pa’ (i.e. '(x)(Px)> Pa’) is 

true in every possible case, no matter what the facts are regarding the in- 
dividual a and the property P. Only two cascs need to be distinguished. 
Case (1): the individual @ has property ?. In this case, ‘Pa’ is true; 
hence (by Truth-table 1(4)) the whole scntence is true. Case (2): a fails to 
have property P. In this case, the sentence ‘(x)Px’ is false because it asserts 
that all individuals have property P; hence (again by the truth-table) the 
whole scntencc is true. The sentence in question is thus necessarily true, 
regardless of the facts. We may also see this immediately from the word- 
language version of ‘(x)Px> Pa’. “If all individuals are P, then a is P”. 
Indeed, the sentence ‘(x)Px> Pa’ can be included among sentences that are 
L-true in our technical scnse, provided we extend in a suitable way the 
rules governing valuc-assignments. Let us make that extension now. 

Let us agree that free variables and descriptive signs count as value-bear- 
ing signs. [Thus, in ‘(x)Px> Pa’ only ‘P’ and ‘a’ are value-bearing.] As 
values of individual signs, let us take all individuals of the domain in ques- 
tion; and as values of one-placc predicates, let us take all classes of these 
individuals (i.e. all subclasses of the domain in question). 

Let us agree to regard a one-place atomic formula as true at a given value- 
assignment if and only if the individual (assigned as the value of the 
individual sign) belongs to the class (assigned as the value of the predicate). 
Further, we agree to regard a universal sentence (say, ‘(x)Px') as true at a 
given valuc-assignment provided the operand of this sentence (here ‘Px’) is 
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true at each value-assignment to ‘x’, in view of the assignment already given 

to the remaining value-bearing signs (here, only ‘P’). 
In view of the above, it is readily sccn that the sentence ‘(x)Px> Pa’ is 

true at every value-assignment to the value-bearing signs ‘P’ and ‘a’, and 

hence is L-true. [The argument is essentially the same as that given at the 
peginning of this section; we repeat it here because the formulation must 

now be phrased in terms of value-assignments. Case (1): the value-assign- 

ment to ‘P’ and ‘a’ is such that the individual assigned to ‘a’ does in fact 

pelong to the class assigned to ‘P*. At this valuc-assignment, ‘Pa’ is true; 

and hence the whole sentence ‘(x)Px> Pa’ is true. Case (2): the value- 

assignment to ‘P’ and ‘a’ is such that the individual assigned to ‘a’ does not 
belong to the class assigned to ‘P’, At this valuc-assignment, ‘(x)Px’ is 

false since ‘Px’ is not true at every valuc-assignment to ‘x’ (in particular, 
*px' is not true if we assign to ‘x’ the individual presently assigned to ‘a’); 
hence at this value-assignment the whole sentence ‘(x)Px> Pa’ is again true. 
Consequently the sentence is true at every value-assignment.] Similarly, the 
open formula ‘(x)Px> Py’ is L-true; for the possible value-assignments to 

the free variable ‘y’ are identical with those to ‘a’. 
It is further evident that any other scntencc with the same form as 

‘(x)Px> Pa’, but with a different predicate in place of ‘P’, is truc just as 
(x)Px> Pa’ is. E g.‘(x)Qx> Qa’ istruc. Now we saw earlier that sentential 

variables arc useful because they facilitate the creation of open L-true 
formulas from which L-true sentences can be obtained by arbitrary substitu- 
tions. Here, analogously, it is useful to introduce predicate variables, Let 
us agree to use 'F", 'G', ‘H’, *K" (and other Ictters, as occasion demands) for 
predicatc variables, and to count as expressions substitutable for these 
variables cither predicatc constants or other predicate variables. In making 
yalue-assignments for a sentential formula, we assign classcs of individuals 
to one-place predicate variables and also to one-place predicate constants. 
Thus e.g. the open formula ‘(x)Fx> Fa’ is L-true, since in fact the possible 
yalue-assignments to ‘F’ are the same as thosc originally possible for 'P’, 
From this L-true formula our earlicr L-true scntenccs can then be obtained 
by substituting ‘P’ for ‘F", or else ‘Q" for ‘F’.. The open formula ‘(x)Fx> Fy" 
with both ‘F’ and ‘y’ as free variables is also L-true, and is in fact the most 
general formula of the form considered here; it has as substitution instances 
the previous L-true formulas of this section. ‘(x)Fx> Fy’ is a purcly 
logical formula, devoid of descriptive constants. 

10b. Intensions and extensions, Our practice has becn to definc L- 
concepts on the basis of value-assignment. Now let us take up several 
questions regarding thc sorts of values we have uscd in such assignment. 
Why do we take the values of scntential variables to be truth- values and not 
propositions? Of course, it is simpler to work with just two truth-values 
than with indefinitcly many propositions, But the question is: Is this 
simplification justifiable? A similar question occurs in connection with 
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one-place predicate variables: Is it justifiable to take as valucs of these 
predicate variables just classes of individuals, rathcr than propertics? 

In order to resolve these questions we introduce here the scmantic 
conccpts of intension and cxtension (A rcader concerned chiefly to master 
the technique of the symbolic language, and having less intcrest in semantic 
and philosophic matters, may omit this scction (10b).) 

A one-place predicate designates a property. (E.g ‘Book’ designates the 
property of being a book; ‘Bluc’ designates the colour blue, a property of 
certain things ) We shall call this property the intension of the predicate 
By the extension of a predicate we shall understand thc class of individuals 
shaving the property designated by the predicate (E.g, the extension of 
‘Book’ is the class of books; and the extension of ‘B/ue’ is the class of blue 
things.) Analogously, we consider the intcnsion of a two-place predicate 
to be the two-place relation designated by the predicate, and the extension 
of a two-place predicate to be the class of ordered pairs of individuals for 
which the predicate holds (i.e the class of ordered pairs that satisfy the 
relation designated by the predicate), (Eg. the intension of the predicate 
‘Fa’ is the relation of fatherhood, and the extension of this predicate is the 
class of pairs comprising a father and one of his children) In gencral, for 
any natural number n, n>2, we take the intension of an n-place predicate 
to be the n-place relation designated by that predicate, and its extension to 
be the class of ordered n-tuples for which the predicate holds 
We agrce that the intension of a sentence shall be the proposition desig. 

nated by this sentence, and that its cxtension shall be its truth-valuc. The Jast 
part of this agrcement reflects the fact that the truth-valuc ofa sentencc has a 
role similar to that of the class of individuals corresponding to a predicate, 

While not customary, it is useful to make analogous distinctions for indi. 
vidual constants (or, more gencrally, for closed individual cxpressions) 
Suppose the father of Peter Brown is also mayor of Lexington. Then the 
two phrases “the father of Peter Brown” and “the mayor of Lexington” 
(more precisely, the individual expressions in our symbolic language that 
correspond to these two phrases; such expressions are introduced later (35) 
as “descriptions") refer to the same individual. Of these two phrases, 
thercfore, we say that they have the same cxtension, viz. this particular 
individual, On the other hand, it is evident that the two phrases have 
different senses. By the intension of an individual expression we under- 
stand its sense This is a concept similar to property or relation, but of a 
different type for which there is no established designation; we agree to 
use for it the term “individual concept”. We will become acquainted later 
with still other such concepts, among them functions like e.g. the arith 
metical sum-function designated ‘+*. By the intension of such a function 
sign (or: functor) we understand the function designated by the sign; by its 
extension we understand the value-distribution of the function (a notion to 
be explicated later). 
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Next, suppose that the symbolic language contains variables whosc 

substitutable expressions include the constants and closed compound 

expressions of some fixed kind. Following out the stinction between the 

jntension and the extension of a constant, it is possible here to set up a 

similar distinction between the value-intensions and the calue-extensions of 

a variable. Expressions substitutable for a variable have both intensions 

and extensions; we count all such intensions among the value-intensions 

of the variable, and similarly all such extensions among the valuc-extensions 

of the variable. When we think of the “valucs” of a variable, we usually 

have its valuc-intensions in mind However, in examining the L-truth of 

logical formulas constructed in a language with so simple a structure as the 

symbolic languages treated in this book, it is quite sufficient to consider the 

values of a variable as its value-extensions. E.g. the values (regarded as 

value-intcnsions) of the sentential variables ‘p’,‘q’, etc., are propositions; as 

we have scen, howcver, the tautological character of (say) the formula 

‘pV~p’ can be asccrtaincd without considering numerous (in some circum- 

stances, infinitcly numcrous) propositions, but simply the two truth-valucs 

which are the valuc-extensions of the variable ‘p’. 

So far as the truth-value of a sentential compound is concerned, it is 

sufficient to consider just the valuc-cxtensions (the truth-values) of con- 

stituent scntential variables becausc the truth-value of this compound is 

uniquely determined by the truth-values of its components; i.e. the sentential 
connectives used in such compounds are themselves extensional. Again, 

the truth-value of an atomic sentence obviously depends only on the cxten- 

sion of its predicate and the extensions of its individual constants, hence, 
an atomic sentence is also extensional. Continuing, the truth-value of a 
universal sentence depends only on the extension of the property determined 
by the operand of the quantifier (i.c. on whether this property attaches to all 
individuals, or not); thus a universal sentence is also extensional. The same 
remark applies to an existential sentence. Indeed, each of our symbolic 
languages— the present language A, and the languages B and C to be 
introduced later—~is an extensional language in the following scnse: a 
sentence in any one of these languages does not change its truth-value if 
any expression in the sentencc is replaced by another with the same extension. 
Consequently, it sufficcs for the evaluation of any formula to consider 
simply the possible extensions of the formula’s descriptive constants and the 
value-extensions of the formula’s variables. 
A symbolic language which, in.contrast to the one treated here, also 

contains symbols for the so-called /ogical modalities—i.c. such concepts as 
necessity, possibility, impossibility, contingency and the like—is not 
extensional, [For supposc it is not raining here now Then the sentence 
“itis raining” is falsc, and so has the samc extension (or truth-valuc) as the 
L-false sentence “it is raining and it is not raining". Now Ict this last 
sentence be a component in a larger modal sentence; when “‘it is raining and 
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it is not raining” is replaced by “‘it is raining’’, the truth-valuc of the whole 
modal sentence does not always remain unchanged. E.g. the modal sentence 
“itis impossible that it is raining and it is not raining” is truc, whereas the 
sentence “‘it is impossible that it is raining” (produced thercfrom by the 
indicated replacement) is false—for while it is not the case that it is raining 
here now, this case is nevertheless logically possible. Thus symbolic 
languages with modality symbols are gencrally not extensional.) In such 
non-extensional symbolic languages, one must considcr intensions as wel] 
as extensions as values of descriptive constants and variables. 

Most systems of symbolic logic employ an extcnsional language, for the 
reason that such a language has radically simpler structure and hencc simpler 
constitutive rules. However, it cannot justly be said that this procedure 
compels a neglect of the logical modalities: these can be expressed in 
another way, viz. in the metalanguage, with the aid of L-concepts. Instead 
of saying a certain proposition (or state of affairs) is necessary—or im. 
possible, or possible, or contingent—, we say that a corresponding sentence 
(i.e. one that designates the proposition in question) is L-true—or L-false, or 
not L-false, or L-indeterminate, respectively. E.g. let ‘A’ designate the 
proposition (the possible state of affairs) that it is raining here now; ‘AV~A’ 
then designates the proposition that it is raining or it is not raining. Within 
a modal language containing words one would say “‘it is necessary that it is 
raining or it is not raining”; in a symbolic modal language having the 
symbol ‘N’ for “‘necessary”, the sentence would appear as ‘M(AV~ A)’, 
By contrast, this sentence cannot be stated in our object language because 
this language is extensional; however, wc can formulate the corresponding 
sentence “the sentence ‘AV~ A’ is L-true” in our mctalanguage. 

INTENSIONS AND EXTENSIONS OF THE CHIEF TYPES OF EXPRESSIONS 

Expression ! Intension i Extension 

Sentence Proposition ! Truth-value 
Individual constant Individual concept Individual 
One-place predicate Property Class of individuals 
n-place predicate (n>1) | n-place relation Class of ordered n-tuples of 

individuals 
Functor t Function , Value-distribution 

11. VALUE-ASSIGNMENTS 

On the basis of the preceding considerations we now undertake to 
clarify generally the two concepts of value-assignment and evaluation. 
Earlier (in 5) we applicd these concepts just to sentential constants and 
sentential variables; this application will now be extended to other kinds of 
signs, 



11, VALUE-ASSIGNMENTS 43 

We count as value-hearing signs in a given scntential formula S; all 

descriptive signs and all free variables in S;. A ralue- assignment for S, 

consists in associating with cach value-bearing sign in ; a possible extension 
of that sign. Let us use the sign ‘%" of the mctalanguage for value-assign- 

ments. Values of the following kinds are then associated with those 

yalue-bearing signs we have already introduced into the symbolic language: 

(1) with a sentential sign: a truth-valu 
(2) with an individual sign: an individual (of the given domain of 

individuals); 

(3) with a one-place (descriptive) predicate: a class of individuals; 

(4) with an n-place (descriptive) predicate, or an n-place predicate 
variable (n> 1): a class of ordercd #-tuples of individuals 

Ifa certain valuc-bearing sign occurs morc than once in the given formula, 

the same extension is associated with it at cach of its occurrences (in case the 
sign is a variable, the same extension is associated with it at each of its fiee 

occurrences). 
Now suppose we are given a sentential formula S, and an arbitrary 

value-assignment %, for the valuc-bearing signs in this S, Then the 

evaluation of S, at Yj, ie. the establishment of the truth-value of S, 
relative to %,, is made in accordance with the following rules of evaluation 
In stating each rule, we employ “T: as short-hand for “the following is 
a necessary and sufficient condition that formula S, have the truth-value T 
relative to U,:...". In other words, “T: ...” means “‘if..., then 3, is true 
relative to %,; and if not .., then S; is falsc relative to B,"". 

+RI1-1. Rules of evaluation for a sentential formula S, at a value-assign- 
ment B,: 

a. Suppose S; is a one-place atomic formula. Then %, com- 
prises a class of individuals (as value for the predicate), and 
a single individual (as valuc for the individual sign). 
T: the single individual belongs to the class. 

Suppose is an n-place atomic formula (n>1). Then 
3, comprises a’class of ordered n-tuples of individuals, 
and a single such n-tuple. 
T: the single n-tuple belongs to the class. 

Suppose , is ~ 
T: the value of S; at YW, is F. 
Suppose &; is 5;V S,. 
T: at least onc of S; and &, has at B, the value T. 

e. Suppose S, is 5.5, 
T: Each of S; and &,,, has at &, the value T. 

b, 

° 

= 
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+RIU-J f. Suppose is S>S,,. 
T: at %,, S; has the valuc F or ,, the value T or both, 
Suppose =, consists of a universal quantifier whose operang 
is the formula S;. 
T: S; at &, is true for cvery valuc-assignment to the variable 
occurring in the universal quantificr. 
[In case the variable of the universal quantifier does nop 
occur free in S;, then: T: S; at %, is truc.] 

h. Suppose &, consists of an cxistential quantificr whose 
operand is the formula 3; 
T: S; at %, is true for at least one valuc-assignment to the 
variable occurring in the cxistential quantifier. 

[In case the variable of the existential quantificr docs no 
occur free in S;, then; T’ S, at Y, is true.] 

i, Suppose &, is an identity formula (17a), with the sign ‘=" 
of identity standing between two individual expressions. 
T: the two individual expressions have at 8, the same indi. 
vidual as valuc. 

A given value-assignment for a scntential formula fixes initially the values 
to be associated with the valuc-bearing signs of this formula, Thercafter 
application of the rules of evaluation—first to atomic formulas, then step 

by stcp to increasingly comprchensive component formulas- -cventuates in 
the truth-value of the entire formula at the given valuc-assignment. 

If formula &; is true at the value-assignment %,, we also say that %, 
satisfies formula &,, i.c. the values associated through %, satisfy S,. 

By the range of a scntential formula 2; we understand the class of thos 
value-assignments at which =, comes out truc. While this definition iy 
phrased in the same way as the carlier onc (given in 5), it should be borne in 
mind that ‘valuc-assignment’ now refers to the extended concept introduced 
at the beginning of this scction. The definitions of the various L-concept 
can thus be carried over unchanged; we shall not repeat them here Note, 
however, that in the present context these L-concepts apply to additional 
sorts of forms, in particular forms containing individual variables and 
predicate variables. 
We say a formula is descr iptire when it contains at least one descriptive 

sign; otherwisc, /ogical A logical formula, therefore, contains only 
variables and logical constants. In connection with open logical formulas 
(formulas whose only value-bearing signs are frec variables), the following 
terminology is often employed. such a formula is called universally valid 
when it is satisfied by every valuc-assignment; sarisfiable when there is at least 
one value-assignment that satisfies it; and wnsarisfiable when there is no value 
assignment that satisfics it. Instead of these terms we use for the most pat 
the L-terms ‘L-truc’, ‘not L-falsc’ and ‘L-false’ respectively; these last ha 
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the advantage of supplying a single terminology suitable at once to open 
logical formulas, to open descriptive formulas and to closed formulas (or 

sentences). 

12. SUBSTITUTIONS 

2a. Substitutions for sentential variables. We have alrcady noted that 

the sentential formula obtained from a given L-true sentential formula with 
a free sentential variable by an arbitrary substitution for this variable is 

again an L-truc formula. Similar remarks may now be made respecting 

other variables. Therefore we will soon present lists of purely logical L-truc 

sentential formulas with free individual variables and predicate variables 

(the latter employed initially simply as free variables), and make the 
observation that any formula obtaincd from a listed one by substitutions is 
again an L-true formula, Before presenting these lists, however, we must 

state more exactly how substitutions are madc for free variables of different 

kinds. One general remark can be made at the outset. every substitution 

for a variable in a given formula requires that the same cxpression be 

substituted at cach free occurrence of the variable in the formula (these 
occurrences are termed the “‘substitution positions”); an exception to this 
regulation is formula-substitution for a predicate variable—a type of 

substitution that will be described below (12c). 
Up to the present it has been permissible to substitute an arbitrary 

sentential formula for a free sentential variable, But our system now 

includes bound variables; hence we must limit substitution in the following 

way. For a scntential variable in a given sentential formula =; an arbitrary 

sentential formula S; may be substituted, provided no individual variable 
which occurs free in S; becomes bound at one of the substitution positions 
inS,. Eg. in ‘(x)(p> Fx) = [p > (x)Fx]' no formula in which ‘x’ is free 
may be substituted for ‘p’ because ‘x’ would become bound at the first 
substitution position. [This example suggests a ready cxplanation for the 
limitation we have placed on substitution. The formula given is L-true, 
Substitution of ‘Px’ for ‘p’ in this formula produces the following formula 
Sy: (X)(Px> Fx) = [Px > (x)Fx]’. Now formula =, can be seen to be 
not L-true. For suppose we obtain from S, the substitution instance &,: 
“(x)(Px> Px) = [Pa > (x)Px]’ by substituting ‘P’ for ‘F’ and ‘a’ for ‘x’ 
(note that only the fourth occurrence of ‘x’ is free and so open to the 
substitution of ‘a’) Suppose further we take %, to be a valuc-assignment 
that associates with ‘a’ a certain individual and that associates with ‘?" a 
class containing the individual associated with ‘a’ but not all individuals. 
At this value-assignment %, it is clear that ‘Pa’ is truc and ‘(x)Px’ is false, 
ie. the right member of the biconditional ©, is false; and similarly it is clear 
that the left member of <, is always true. Hence &, is false at ¥, Conse- 
quently S, is not l.-true, and so S, is not L-true either } 
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12b. Substitutions for individual variables. For an individual variable 
there may be substituted an arbitrary individual constant or an individual 
variable, provided the following limitation is observed: no individual 
variable is to be substituted which becomes bound at onc of the substitution 
positions. E.g. in ‘(x)RyxV(3z)Szy’ there may be substituted for ty’ any 
individual constant, and any individual variab{e except ‘x’ and ‘z’—for ‘x" 
would become bound at the first substitution position, and ‘z’ would become 
bound at the second = [The following example from the domain of natura} 
numbers suggests the reason for the limitation we have placed on substitu. 
tions for individua] variables. The formula ‘(3x)Gr(x,y)' holds for every y, 
since it says simply “there is a number x which is greater than y”. If now 
in this formula we were to allow the substitution of ‘x’ for the free variable 
‘y’ (in violation of our restriction, since ‘x’ clearly becomes bound at the 
substitution position), we would obtain the sentence ‘(3x)Gr(x,x)’. This 
sentence says “there is a number which is greater than itself”, and is evidently 
false. 

12c. Substitutions for predicate variables. Here we must distinguish 
between two different kinds of substitutions. Onc kind, simple substitution, 
has already been mentioncd: for an n-place predicate variable therc may be 
substituted an arbitrary -place predicate or an arbitrary n-place predicate 
variable, with no limitations whatever. [Latcr, whcn bound predicate 
variables are uscd (16a), the following limitation holds: no predicate variable 
is to be substituted which becomes bound at one of the substitution 
positions.] 

There is, however, another kind of substitution for a predicate variable, 
which we shall call formu/a-substitution. Let us lead into a discussion of 
formula-substitution by way of an cxample. 

Suppose =, is the sentential formula ‘(x)Fx> Fa’. It has been brought 
out above that S; is L-true, hence S, holds for cvery property F. Now itis 
easy Lo state that what 3; claims for all properties holds in particular for the 
properties P,Q, ctc.; we merely use simple substitution and produce the 
substitution instances *(x)Px> Pa’, *(x)Qx> Qa’, etc However, we must 
note an important fact, viz. not all properties expressible in our symbolic 
language arc designated by predicates like ‘P’, ‘Q’, etc. Indeed, every 
arbitrary sentential formula with an individual variable as its sole free 
variable expresses a property of individuals. If e.g. S, is ‘QxV Rxb’, then 
&, is such a formula (the individual variable ‘x’ is its only frec variable); 
and the property of x expressed by S, is the property of being Q or bearing 
the relation R to b, Moreover, what S; asserts about all properties must 
in particular be true of the property expressed by S,—a claim conveyed by 
the sentence S;: *(x)(QxV Rxb)>(QaV Rab)’. It is our intention to count 
the sentence &, as still another substitution instance of S,. But we must 
recognize this sort of substitution as not another version of simple sub- 
stitution; we are not simply substituting a predicate for ‘F’, but rather 
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substituting first the compound &, for the full formula ‘Fx’ and then the cor- 
responding compound for ‘Fa’ in accordance with the following scheme: 

‘Fx’, ‘OxV Rxb’; 
Fa’, ‘QaV Rab’, 

This scheme is constructed as follows: In the first line, write an open full 

formula of ‘F” (called the nominal formula) and follow it by that formula 
(having the same free variable) which we have sclected to be the substitutum 
(the substitutum expresses the property in terms of which we wish to form 
a special casc of the given formula &;). Since S, involves ‘Fa’ as well as 
‘fx’, we add to our scheme a sccond linc that begins with ‘Fa’ and follows 
it with a formula obtained from the second formula of the first linc by the 
same substitution as that Icading from ‘Fx’ to ‘Fa’, viz. the substitution of 
tq’ for ‘x’. Had it happened that our original formula ; also involved, 
say, ‘Fu’ and ‘Fh’, we would continue our scheme with two more lincs of 

formula-pairs, thus: 

‘Fu’, ‘QuV Rub? 
“Fo, *QbV Rb’. 

Each of these pairs of formulas is obtained from the formula-pair in the 
first line of the scheme by a uniform substitution for the individual variables 
that occur in the nominal formula. The substitutions are so chosen that 
the first formula of the resulting pair is onc which appears in a determinate 
place in the original formula. Conccived in its cntirety as a single act of 
substitution, we see that our procedure consists in substituting into the 
original given formula simultancously for all full formulas of ‘F’. What is 
substituted for a particular full formula of ‘F” is the substitutum that stands 
alongside this full formula in our scheme The first line in the scheme (i.e. 
the first formula-pair) represents the substitution we have chosen; thercupon, 
in all subsequent lines (i e. all subscquent formula-pairs), the second formula 

or substitutum is uniquely determined. 
The example treated above introduccs us to the type of substitution we 

call formula-substitution. The scheme devcloped in conncction with 
formula-substitution serves mainly to guide the substitution. As we have 
said, the first formula-pair in the scheme represents the substitution chosen, 
and subscquent pairs of the scheme follow systematically from the first in 
accordance with the demands of the original formula. What we take for 
our first formula-pair (i.c. for our substitution) is to a large extent arbitrary, 
but is not entirely without restrictions. These limitations are suggested 
in the next paragraph, where we state general rulcs governing formula- 
substitution, 

Let the formula S; be given, and supposc =; contains an n-place predicate 
variable for which substitution is to be made. Let S, be the nominal 
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formula, and S, the substitutum chosen for S,. Formula-substitution 
may then proceed, subject to the following rules: 

1, The nominal formula S; consists of the predicate variable in question, 
together with ” arbitrary different individual variables; 

2. The substitutum ©, for S, is any sentential formula such that: 

a, the variables of G; do not occur in the quantifiers (or other opera- 
tors) that appear in &, (thesc variables usually occur free in S,, but 
this is not necessary); 

b, the variables which occur in S; but not in S; do not occur in 5, 
(variables which occur neither in S; nor in S, may occur arbitrarily 

in S,, free or bound); 

3. From the formula-pair S;, S, other formula-pairs are obtained by the 
same substitutions for the variables occurring in S,; 

4. The substitution of S, for S; in S, proceeds as follows’ each full 
formula in ©, with a (free) occurrence of the predicate variable in question 
is replaced by the substitutum which is paired with this full formula in 
accordance with rule (3). 

12d. Theorems on substitutions. 

+TI2-1, Suppose S, and &; are arbitrary scntential formulas. Suppose 
&;' and S,’ are obtained from S; and S, respectively by the same 
substitutions of the following four kinds for onc or more (but 
not necessarily all) of the free variables: (1) substitution for a 
sentential variable; (2) substitution for an individual variable; 
(3) simple substitution for a predicate variable; and (4) formula- 

substitution for a predicate variable. Then the following hold: 
a. If S; is L-true, then S,’ is also L-true 
b. If S, is L-falsc, then S,’ is also L-falsc, (By (a) and T5-2a) 
ce. If S,’ is L-indeterminate, then S, is also L-indetcrminate, 

(By (a) and (b).) 
d, If, L-implies S;, then S,’ L-implics & 
e. If S, and S; are L-equivalent, then 

L-cquivalent. (By (a) and T6-7.) 

Proof of (a) Assertion (a) was proved earlicr for scntential variables, cf, T7-la 
Similar considerations obtain for the other kinds of substitutions For ied 
every value-assignment to the variables concerned. (and the other valuc-bearing signs), 
hence in particular =; must bz satisfied by the valuc-assignments which result from 
arbitrary valuc-assignments to the valuc-bearing signs that occur in the substituted 
expressions — These remarks apply particularly to formula-substitution for a predicate 
variable, where the situation- though somewhat more complicated—is still essentially 
the same We illustrate this fact by means of an cxample similar to an carlicr onc, viz, 
the substitution of the formula 2, ‘QxV Rxb' for ‘Fx’ in an L-true sentential formula 
=; where ‘F’ occurs by way cf the following atomic formulas’ ‘Fa’, ‘Fx’ (in the compound 
“()Fx’); FB, and "Fu (where ‘x’ is @ free variable in 2)). Formula 2/’ is obtained from 

(By (a) and T6-4,) 
and &,’ are also 
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) by systematically replacing ‘Fx’ by ‘Ox V Rxh’, ‘Fa’ by ‘QaV Rab’, ‘Fb’ by *bV Rb’, 
and *Fu’ by ‘QuV Rub’. Now let 8; be an arbitrary valuc-assignment to whatever value- 
bearing signs besides *F" happen to occur in & (these include ‘a’, ‘b’, ‘u', and possibly 
other signs) In <g, besides ‘x’ and ‘6', there appear two new valuc-bearing signs, ‘O” 
and ‘R’, let 8’ be an arbitrary valuc-assignment to these latter two signs. On the basis 
of 8)’ and % (which last assigns a value to ‘b’), the formula < determines a certain class 
K. (The class X is the class of all thosc individuals which, when treated as valuc-assign- 
ments to ‘x’, render 2, truc, ic. Kis the class of thosc individuals which cither belong to 
the class chosen for ‘Q" or bear the relation chosen for ‘R’ to the individual chosen for 
tp.) Let & be the valuc-assignment which associates this class K with ‘F" Now it is 
easily seen that the truth-value of G; at the value-assignment 8+ 9; is the same as the 
truth-value of €;’ at the value-assignment %;+%,' For cach of ‘Fa' and ‘QaV Rab! is 
true if and only if the individual assigned to ‘a’ by &, belongs to the class K, And 
further, with an arbitrary valuc assigned to ‘a', each of ‘Fx' and *QxV Rxb' is truc just in 
case the individual assigned to ‘x’ actually belongs to K, whence it follows that cach of 
4(x)Fx" and *(x)(Ox V Rxb)' is true if and only if K is the domain of all individuals. And 
continuing further, similar remarks arc sccn to apply to the atomic formulas ‘Fu’ and ‘Fb 
and their substituta The argument in respect to our illustrative example is now com- 
leted as follows. Since is L-true, it is truc at cvcry valuc-assignment, and so in 

particular at the assignment %j+%; Therefore ‘is trucat the assignment 8+ 8,’ It 
being the casc that ¥ and % arc arbitrary assignments, we see that <;' is true at cvery 
value-assignment. Consequently, j* is L.-true. 

The content of Tla, viz. that L-truth persists under arbitrary substitutions, 
is of great importance. E.g., an instance of this importance is the matter of 
proof. Recall (from 8d) our understanding of a derivation as a sequence of 
sentential formulas which begins with given formulas (premisscs) and which 
procecds through other sentential formulas onc al a time, each step being a 
formula that is L-implicd by the ones preceding it. Now, by a proof we 
shall understand a derivation whosc premisses arc L-true. The object in 
setting up a proof is to show that its last formula is L-truc. In this connec- 
tion, two remarks are pertinent. According to T6-la, every formula of a 
proof is L-truc. And according to the results of the present scction, 
arbitrary substitutions are allowable in obtaining steps in proofs. [In this 
last respect, proofs are in sharp contrast to derivations. Gencrally, a 

derivation cannot admit a step which depends on substitutions because an 
initial formula ©, generally does not L-imply a substitution variant S,’ of 
itself. We return to this matter in the next section.} Another reason for 
the importance of Ta lics in the practical utility it imparts to lists of L-true 
formulas, ¢ g. the lists presented in 14. 

+T12-2, Suppose ©, is formula in which ‘x’ occurs as a frec variable, 
but ‘y’ docs not occur Suppose 5,’ results from S; by the 
substitution of ‘y’ for ‘x’. Then the following hold (and analo- 
gous asscrtions hold for other arbitrary individual variables): 

a. If S; consists of an all-operator ‘(x)’ with S, as operand, and 
S,' similarly consists of ‘(y*)’ with as operand, then: 3, 
and &;,’ are L-cquivalent. 
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+112-2  b. If S, consists of ‘(3x)’ with S; as operand, and &,' of *(3y) 
with S,' as operand, then: &, and 3,’ are L-cquivalent, 
((b) is an analog of (a) ) 

Proof of (a). Suppose %; is any valuc-assignment that makes 2; true Then Yj, to. 
gether with an arbitrary value-assignment Yx to ‘x’, satisfies 2; (in view of our rule 
Rli-1g of evaluation) Hence ¥j, together with an arbitrary value-assignment to ‘y*, 
satisfies Therefore Wj satisfies <j", us was to be shown. The converse is urgued 
analogously. 

This theorem countenances an opcration that is called revising (or re. 
writing) @ hound variable: Given a universal formula or an existential 
formula, the variable occurring in the operator may be replaced at this 
occurrence by any other variable that docs not occur in the operand, 
provided only that the samc replacement is made at every frec occurrence 
of the original variable in the opcrand. The new formula which results is 
L-equivalent to the original formula. This revision of bound variables is, 
on its face, an entirely plausible operation; it is cvident, e.g. that ‘(x)Px’ and 
“(y) Py’ say exactly the same thing, viz. every individual is P. Later we will 
establish a theorem on interchangeability (it is T15-3) which permits revision 
of bound variables in a formula that is a component of another formula, 

12e, Example. The formula ‘(x)(Fx)> Fx’ is L-truc (cf 10a), hence any substitution 
instance of it made in accordance with the rules should also be L-true (cf Tla). Suppose 
we take as the nominal formula ‘Fx’ and as the substitutum *F vy". To check restrictions 
2a and 2b (12c) we notice that (u) the variables of ‘Fx’ (viz. ‘x') do not occur in operators 
that appear in *Fx)* (since there are no operators there), ind (b) variables which occur in 

‘x") but not in ‘Ax’ (since ‘x" also occurs here there are nonc) do not 
The substitution now proceeds and yields *(x)Kxy>Axy" as L-true, 

Now since ‘x’ is free in its last occurrence in this result, we may substitute any variable or 
constant which does not become bound at the substitution position. [et us substitute 
‘y' We thus establish that *(x)Fxy> Fy" is Ltruc. (How?) To show why certain 
restrictions on substitution are necessary we shall consider a substitution which violates 
restriction 2a (12c) Beginning with the L-truc formula ‘(x)Exy> Fy", choose *Fxy" as 
the nominal formula and *(3)Rxy" as substitutum. This substitutum violates restriction 
2a since 'y* (which is a variable of *Fxy") occurs in an operator that appears in *(37) Rxy", 
Note though, that the chosen substitutum violates no other restrictions. Now write: 

‘Fay’, “(ay) Rs 
“Fev, “Gy Ry". 

Completion of the substitution yields "(x)(y)Rxy> (37) Ry", which is not L-truc (cf. 
exercise 1 below). Thus if restriction 2a were dropped, substitution would no longer 
have the L-truth preserving characteristic we want of it 

Exercises. 1. Show that ‘(x)(3s)Ry’> (3y) Rvv" is not L-truc by finding an interpreta- 
tion for *R* which makes the formula false (Hint. use the domain of natural aumbers, 
sec scc 2c, (3)) —2, Show that restriction 2b cannot be dropped and substitution still 
have its L-truth preserving characters. ~ 3. Not every substitution which violates onc of 
the restrictions fails to preserve L-truth. Show that this is truc by constructing a sub- 
stitution instance of the L-true formula *(x)Fx> Fy’ which violates restriction 2b, but 
preserves L-truth. — 4. Decide whether each of the following can be obtained directly 
(regardless of restrictions 2a and 2b) by substitution from *Fy>(qx)Fx" If it can be so 
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obtained, give the nominal formula, the substitutum, and the other formula pair uscd. 
Also indicate whether restrictions 2a or 2b were violated The first case is solved as un 

example 

a) (gz FlizV H2zx) > (3xXEz\ H1xzV Hzx)' is obtainable using *Fy", *(3z)(/IyzV 12x)", 
‘px, (gz\UiezV Hzay— The substitution violates restriction 2b. 

by Hy2Glhe", ) Hy? Goler. d Mye GH; ) ‘Hr 2(30Hzx', 
£)*Hy2> (3x) Haz", ) GeV Harn 3 (320(GxV Hx)’, h) “A129 (3a)H ea, i) G2)~ M22 
(qutae)~ Haz’, i) GH 2G OQ k) (Ge) MayrV 2x) >(3aXgeKMaxeV Hayy" 
3%5, Show that (4b) and (4g) arc obtainable without violating any restrictions by com- 
pining formu substitution with individual variable substitution, 

13, THEOREMS ON QUANTIFIERS 

In this section we establish theorems on quantificrs, mainly universal 
quantifies, with special attention to theorems that deal with transformations. 
affecting universal quantificrs, lt is impoitant in this connection to dis- 
tinguish clearly between transformations of this type which can be employed 
in any derivation and tiansformations which can be uscd only in proofs. 
The fundamental distinction is as follows: If a theorem asserts that a 
formula =, L-implics another formula 2;, then the step from =, to S; is 
admissible in any derivation. [Whence, of course, the step from 2; to S; 
is admissible in any proof; for by T6-la, if S; is L-truc, so also is S;] 
When, however, a theorem asserts only the weaker claim that if S, is L-truc, 
then S; is also L-truc, the step from =; to S; is admissible in any proof, but 
js not generally admissible in derivations. 

13-1. Suppose J, is an arbitrary sentential formula in which ‘x’ occurs 
free. Suppose the formulas %(=,) and G(S,) are obtained from 
S, by prefixing to S, the quantifiers ‘(x)’ and ‘(3x)’ 1cspectively 
Finally, suppose =, results from 3, by substituting ‘a’ for ‘x’ in 

S,. Then the following hold (as well as analogous results phrased 
in terms of other individual variables and individual constants): 

a. %(S)> =, is L-truc. (Cf the discussion at the outsct of 10a.) 
+b, &(S,) L-implies S,. (By (a) and T6-4.) 

e U(S,)> is L-true. (By (a) and T12-la.) 

+d. %(S,) L-implies S, (By (c) and T6-4.) 
+e. If S, is L-true, so also is %(S,). (By rule RI 1-Ig.) 

f. If S is L-truc, so also is S, (By T12-Ia,) 
g. If 3, is L-true, and ‘a’ does not occur in 2,, then 2; is also 

L-true. (A proof of this assertion appears below ) 
h, If S, is L-true and ‘a’ does not occur in S,, then U(S,) is 

also L-true. (By (g) and (e).) 

+i. S, Limplies €(S,). (By rule R1I-1b.) 
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T13-1 — j. G,>G(S,) is Ltruc. (By (i) and T6-4) 
k. S,>G(S,) is L-truc. (By (j) and T12-la.) 

+I. S, L-implics €(S,). (From (k).) 

Proof of (g). Suppose that Sg is L-truc and that ‘a’ does not occur in =x. Then 
value-assignment to ‘a’ (together with arbitrary value-assignments to the remaining value. 
bearing signs) makes 2, truc. Thus cvery valuc-assignment to ‘x’ makes , true, 
because ‘a’ occurs in €. at precisely those places in which ‘x’ occurs frec in Zx. Hence 
x is L-true — [The requircment that ‘a’ docs not appear in =x cannot be relaxcd, as the 
following countcrexample shows Take 2x to be ‘Px>Pa’. Then gis the L-true formula 
‘Pa> Pa’. But'Px> Pa’ is not L-true; c.g it is falsc at any valuc-assignment for which x 
belongs to the class P and a does not | 

It is to be emphasized that in general S,>S, is not L-truc, and that in 

general S, does not L-imply S,. E.g. taking ‘Px’ for S,, we sce from the 
remark immediately following the proof of (g) just above that ‘Px> Pa’ is 
not L-true, 

T13-1 tells us that the following transformations are permissible steps in 
derivations, and therefore in proofs: omission of a universal quantifier (b); 
omission of a universal quantificr together with substitution in the operand 
(d)—this transformation is known as “specialization”; prefixing an 
existential quantifier (i); changing an individual constant into a variable 
and prefixing the appropriate existential quantificr (l)—a transformation 
known as “existential inference”, On the other hand, T13-1 tells us that 
the following transformations arc permissible steps in proofs, but not 
generally in derivations: prefixing a universal quantifier (e); substitution (f); 
changing an individual constant at each of its occurrences into one and the 
same variable (g) 

13-2, Vacuous operator. Suppose S; consists of a universal quantifier 
or an existential quantifier, together with an operand S,. Suppose 
further that the variable in the quantifier docs not occur free in S), 
Then S; and S, arc L-cquivalent. [This follows from the paren- 
thetical additions to rules RI l-lg and RI I-lh.) , 

According to T13-2, a vacuous operator may at will be prefixed to, or 
removed from, a formula. 

T13-3. Let S, and S; be arbitrary formulas. Let %, be a universal 
quantifier or a sequence of such quantifiers Then the following 
hold: 

+a, ,(S,.S,) is L-equivalent to U,(S,).U,(S;). (Proved below.) 
b. Lemma. %,[(S;>5,).S;] L-implies 4,(S,). (Proved below.) 
. %,(S;>S;)> [%,(S;)>U,(S;)] is L-true, (Proved below. 

+d. U,(S;>S,) L-implics U,(F,)>%,(,). (From (c).) 
e. If S, L-implies S;, then U,(S;) L-implics U,(S,). (Proved 

below.) 
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713-3 f. If S, and S, are L-cquivalent, then 9,(S;) and 9%,(S;) are 
also L-cquivalent. (By (c) and T6-6a.) 

+g. U,(S,=S)) L-implies U,(S;) = %,(S)). (Proved below.) 

Before taking up the proofs of these assertions, let us note that T3a, d and 
gare distribution laws, i.e. assertions which indicate respectively that a 
universal quantifier (or a series of such) distributes over the components of 
a conjunction, of a conditional and of a biconditional. 

Proof of (a) Suppose ¥y is a value-assignment tothe valuc-bearing signs in %4(2).)), 
and suppose further that %(;. €,) is truc at By. Let & be the part of &j; which pertains 
to the value-bearing signs of 2;, and similarly, &; the part of 84; pertaining to 3; (2; and 
8 may overlap); then jj is the union B+, Now by rule Ril-lg, 2;. & is true at 
By for any valuc-assignment to the variables in %; whence by RIl-le both €; and 2; 
separately are truc there, Thus, €; alone is truc at 8 for any value-assignment to the 
variables of %, which (in view of R11-1g) tells us that %(2;) is truc at @. And similarly, 
alone is truc at ¥; for any value-assignment to thc variables of %, whence %y(z)) is 
true at B= Therefore %(=;).%(<)) is true at By. An analogous argument cstablishcs 
the converse If %(2)).%(,) is true at By, then % (2. S)) is also true there 
Proof of (b) Suppose %[(=;> <;). 1] is true at the value-assignment % Then, by 

Ril-lg, (> )- 1 is true at for any value-assignment to the variables in %. Now 
(&> &)-1 L-implies 2); hence 2; itself is truc at By for any value-assignment to the 
variables in Ue Consequently, %(;) is true at &y. 
Proof of (c)_ By (a), %e(€i> S).% (20) is L-cquivalent to %[(Zi> &). €1], hence, by 

(0), %CS1> S)- a(S) L-implics %(Z;) T6-4 now tells us that [2%%(=)> =). Me(Zi)]> 
44,(¢;) is L-true. Assertion (c) follows from this by an application of T8-61(1). 
Proof of (e). If ; L-implies j, then by T6-4 the formula €;> jis L-true. Hence by 

The U( => S) is L-true, and by (d) so also is %q(2)>%4(z)). An application of T6-4 to 
this last result yiclds assertion (c) as desired. 
Proof of (g). Since T8-6f(1) guarantecs <j= ; is L-cquivalent to (S,> 2).(€/> i), 

we may use (f) to see % 2) is L-equivalent to %4[(Zi> )).(2;> 2] Applying 
(a) to this last formula, it appears %,(;= <;) is L-cquivalent to U4 21> =).%4(E) > =). 
Thus, %(2i= @;) L-implies the conjunction %q(2> 2). (> =i), hence by T6-12c the 
formula %(2i= 2) L-implies cach component of the conjunction scparately Recalling 
(4), we now see that %¢(2i= 2) L-implics cach of %(i)>% (2) and %(Z))> 14(Z)) 
separately, hence (by T6-12c again) the conjunction of thesc last two formulas, and 
finally (by another appeal to T8-6f(1)) the biconditional %(2))=%(2)), as was to be 
proved. 

713-4. Suppose S;, S,, and S,, are arbitrary sentcntial formulas. Let 
Y, be a universal quantifier or a scquence of such quantifiers. 
Then the following hold: 

a. U,(S;) is L-true if and only if S, is L-true. (By T1b,e.) 
b. If S,>S, is L-true, then %,(S;) L-implies U,(S;). (Proved 

below.) 
c. If S;.5,>5,, is L-truc, then %,(S,) and W,(S,) together 

L-imply %,(S,,). (Proved below.) 
a. If S,=S, is L-true, then %,(G,) and %,(S;) are L-equivalent. 

(Proved below.) 
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Proofs Proof of (b)- supposing ;> 2; L-true. by (a) it appears 24(2;> 2)) is L-truc, 
whence 2 2;) is L-truc by T3d, und an application of T6-4 yiclds (b) — Proof of 
(c) supposing 27> 2m L-tuc, we see that 24(2;. 27> 2m) is L-truc by (a). that then 
ty 24. 2))> (Sm) is L-truc by (b). und finally, T3a that uz). ‘m) iS L-truc, 
whence assertion (c) —- Proof of (d) supposing 2j= 2; L-true, is L-truc and 
sO %( 2;)= Mel 2) by T3g, hence (d) 

4 frequently proves uscful in connection with formulas that are tau. 
tologics. E.g. since ‘p.q > p’ is a tautology, the following formulas are 
L-truc: ‘Fx.Gx > Fx’, ‘(x)(Fx.Gx > Fx)’, and ‘(x)(Fx.Gx) > (x)Fx’, 
Whence we see that *(x)(Fx.Gx)’ L-implies ‘(x)Fx’ 

T13-S. a. ‘~(x)Fx’ is L-equivalent to *(3x)(~ Fx)’. 
b. *(x)(pV Ex)’ is L-equivalent to ‘pV(x) Fx’. 

Proof of (a) The only valuc-beuring sign in the two formulas of (a) is So take 
&y to be any valuc-assignment to *F’ at which *~(x)Fx° is true By RI-10,"(x)EN" ig 
false ut %% — Ience, in view of RI1-1g, it is not the case that, for every valuc-assignment 
to ‘x, ‘Fv comes out truc at &y Thus there is a value-assignment &y to ‘y" such that 

‘hx’ is false at %+%y By Ri I-Ie, therefore, *~ Ax" is truc at Y+%y — Consequently 
“(gx)(~ Fay is truc al &%, by R11-th. A similar argument cstublishes the converse, 

Proof o} (b). The valuc-bearing signs in the formulas in (b) being ‘p' and ‘F", let %y 
be any valuc-assignment to ‘p" and “7° at which “(x)(pV Fo" comes out true Now two 
cases are possible, viz. ‘p' is truc at x, or else false (i) Suppose ‘p'is true ut % In this 
case, we sec at Onec by RUI-Id that ‘pV(v)Fa" is truc at Xe. (ii) Suppose ‘p" is false at 

Bye Since “(a)(p VI v)' is true at &, we know from R11-1g that ‘pV yx" at ty is true for 
uny valuc-ussignment to the variable *x", thus (by R11!-!d) we have that ‘vr’ is true at 
any valuc-assignment to *y" Then it follows from R11-Ig that ‘(x)Fx" is true at By, 
whence by RII-Id we sce that ‘7 V(x)/x" is truc al &% Consequently, at cvery value. 
assignment for which “(x)(pV Fe) is truc, ‘pV(x)Fv" is also Irue The converse may be 
established similarly 

We Icarn from T5a that the negation of a universal sentence may be 

transformed into an existential sentence whose opcrand is the ncgation of 
the original operand, The force of TSb becomes more apparent when we 
recall (from carlier remarks in 12a) that in the formulas of TSb there may 
be substituted for ‘p’ any sentential formula in which ‘x’ is not frec. Thus, 
T5b says that a universal sentence whose operand is a disjunction with one 
component devoid of free occurrences of the quantifier-variable may be 
transformed by shifting this component out of the operand, 

14, L-TRUE FORMULAS WITH QUANTIFIERS 

14a. L-true conditionals, Wc sct down here lists of L-truc formulas with 
quantifics—first, in TI, a list of conditionals which includes results on 
L-implications; and second, in T2, a list of biconditionals which includes 
results on L-equivalencc. The lists arc chiefly for reference, but assertions 
marked with ‘+" deserve special attention because of thcir frequent use in 
practical work, The rolc these lists will have is rather like that of the lists 
of tautologics given earlicr (in T8-2 and T8-6). 
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Suppose S;>;, is any one of the conditionals (a)(1) through (k) 
mentioned ‘below Suppose S,'> =,’ is obtained from S,> 2, by 
arbitrary substitutions, Finally, let %, be a universal quantifier or 
a scquencc of such quantificrs Then the following hold. 

» S,>S, is L-true. 

=; L-implies S;. (By (A).) 
i (By (A), in view of T12-Ia.) 

(By (C)) 
>) is L-truc. (By (A), and T13-4a.) 
>%,(S;) is L-true, (By (A), and T13-4b ) 
L-implies %4(S,) (By (F).) 

. Bound variables that occur may be revised arbitrarily into other 
variables, (Sec remark following T12-2.) 

Some of the formulas below have the form S,,.3,>3,. For 
conditionals of this type the following additional assertions hold, 
in view of T13-4c. (We understand S,,’.S,'> 3%,’ to be formed 
from S,,.3,> ) by arbitrary substitutions ) 

TOME OOD 

I. The class comprising formulas 3,, and S Sy L-implies & s 
J. The class compris ing formulas S,,’ and =,’ L-implies 
K. The ie comprising formulas %,(S,,) and %,(S,) L-implies 

U,(S,). 
L. The class comprising formulas %,(S,,") and %,(&,') L-implics 

UC S,') 
+a, Law of specialization (or instantiation). 

(1) (x)(Fx) > Fx (By T13-1a.) 

(2) (x)(Fx) > Fy. (By (1), and T12-1a ) 
b. Law of existential inference (or existential gencralization). 

(1) Fx > (qx)Fx (By T13-1j) 
(2) Fy > (3x)Fx (By (1), and T12-la. 

c (x)Fx > (3x)Fx (By (a)(1), (b)(1), and T8-2f(6) ) 

d. +(1) (x)(Fx> Gx) > [(x)Fx > (X)Gx]. (By T13-3c) 
+(2) (x)(Fx> Gx).(x) Fx > (x)Gx. (By (1) and T8-61 

(1).) 
(3) (A) Fx > [(x)(Fx> Gx) > (x)Gx]. (By (1) and 

T8-61(2)) 

+(4) (x)(Fx> Gx).(@x)Fx > (x)Gx 
(5) (x)(Ex2> Gx) > ((ax)Fx > (Gx) (By (4) and 

18-61(1)) 
(6) (3x)Fx > [(0)(Fx>Gx) > (3x)Gx]. (By (5) and 

T8-61(2)) 
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»  +(1) (X)(Fx=Gx) > (x)(Fx>Gx). (By T8-2e(1) and 
T13-4b ) 

(2) (al Fes Gx) > (x)(Gx> Fx). (By T8-2e(2) and 
T13-4b.) 

(3) ()(Fx= Gx) > [(x)Fx > (x)Gx]. (By (1) and (4) 
(1).) 

+(4) (x)(Fx=Gx).(x)Fx > (x)Gx. (By (3) and TE 
61(1)) 

(5) (Fx > [()(Fx=Gx) > (X)Gx]. (By (3) and 
T8-61(1)) 

(6) (x)(Fx=Gx) > [(x)Gx > (x)Fx]. (By (2) and 
(d)(1).) 

(7) (x)(Fx= Gx) .(x)Gx > (x)Fx. (By (6) and T8- 
61(1)) 

(8) (x)Gx > [(x)(Fx=Gx) > (x)Fx]. (By (6) and 
T8-61(2).) 

+(9) (x)(Fx=Gx) > [(x)Fx = (x)Gx], (By T13-3g,) 

()) (x)(Fx=Gx) > [(9x)Fx > (3NGx). (By (eX(1) 
and (d)(5) ) 

(2) Giirs Gx) .(3x)Fx > (3x)Gx. (By (1) and T8- 
(1) 

(3) anne > [(x)(Fx=Gx) > (3x)Gx]. (By (1) and 
T8-61(2).) 

(4) (x)(Fx=Gx) > [(9x)Gx > (3x)Fx). (By (¢)(2) and 
(dX(5).) 

(5) («)(Fx=Gx) > [(3x)Fx = (3x)Gx]. (By (1), (4), 
and T8-6f(1) ) 

»  +(1) (3x)(Fx.Gx) > (3x)Fx.(3x)Gx. 

+(2) (3x)(Fx.Gx) > (ax)Fx. (By (1)) 

(3) (3x)(Fx.Gx) > (3x)Gx. (By (1).) 

(1) (X)Fx.(9x)Gx > (3x)(Fx.Gx). 
(2) (x)Fx > [anos > (3x)(Fx.Gx)]. (By (1) and 

T8-61(1).) 

(1) @)FxV(x)Gx > (x)(FxV Gx). 

(2) (x)(FxVGx) > (3x)Fx V(x) Gx. 
(3) (a)(FxVGx) > (x)FxV(3x)Gx. (By (2).) 

. Syllogism 

+(1) [()(Fr> Gx) .(x)(Gx> Ix)] > (x)(Fx> Hx). 
(2) (x)(Fx> Gx) > [(x)(Gx> Hx) > (x)(Fx> Hx)]. 

(By (1) and T8-61 (1).) 
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T14-10 j. (3) (x)(Gx> Hx) > [(x)(Fx> Gx) > (x)(Fx> Hx)]. 
(By (2) and T8-61(2).) 

+(4) [(x)(Fx> Gx) .(3x)(Fx.Hx)] > (3x)(Gx. Hx). 

(9) GO(Fx2 Gx) > [(g2)(Fx. Hx) > (3x)(Gx. Hx]. 
(By (4) and T8-61(1).) 

(6) (4x)(Fx. Hx) > [(x)(Fx> Gx) > (3x)(Gx.Hx)]. 
(By (5) and T8-61(2).) 

+k. Interchange of two dissimilar quantifiers. 

(ax)(y)Kxy > (ax) Kxy. 

Most of the formulas listed above are accompanied by references to 
previous formulas and theorems in carlicr sections, by means of which 
the formula in question can be established. Formulas which carry no such 
reference can be proved easily in a similar way, with the help of rules 
Ril-lg,h. 
Remarks on the formulas in Tl. Regarding the use of formulas (a) and 

(b), reference may be made to our earlicr comments on T]3-1, — From (c) 
we learn it is permissible to pass from a universal sentence to the correspond- 
ing existential sentence; such a step is possible in our present system 
because this system admits only non-empty domains of individuals (a 
customary restriction) -~ Formula (d)(1) countenances the distribution of a 
universal quantificr over the components of a conditional — From (d)(4) 
we sec that if some individual satisfies the first component of the operand in 
auniversal conditional (e.g. a law of nature), then some (the same) individual 
satisfies the second component. — Formula (e)(1) says that a universal 
equivalence implics the corresponding universal conditional, — By (e)(9) we 
see that a universal quantilicr may be distributed over the components of a 
biconditional; note further that from (c)(9) follow the two conditionals 
(e(3) and (c)(6). — From (f)(2) we sce that if the first component of the 
operand in a universal biconditional is satisfied, so also is the second 
— Formula (g)(1) countenances the distribution of an existential quantifier 
over the components of a conjunction. (The result here holds in one 
direction only; in the case of disjunction, however, a similar result holds 
in both directions. Cf. T2c(2) below.) — Note that formulas (j) involve 
three predicate variables. We recognize (j)(1) as the well known inference 
called “Barbara” in traditional logic. From (j)(4) we have: if all F are G 
and some individual has both F and H, then some (the same) individual has 
both G and H. 

Finally, some observations regarding formula (k). A sentence of the 
form ‘(3x)(¥)Kxy" is an absolute existential sentence. This sentence says: 
“there is at least one individual x such that for each individual », x bears 
the relation K toy”. On the other hand, a sentence of the form ‘(y)(3x)Kxy" 
is a re/ative existential sentence. A relative existential sentence is weaker 
than (ic, says less than; cf. 6b) the corresponding absolute one. The 
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sentence ‘(y)(3x)Xxy" says: “for cach individual y there is at least one 
individual x such that x bears the relation K to y”. Formula (k) tells us it 
is permissible to pass from an absolute existential sentence to the corre. 
sponding relative one Which is entirely plausible, since if there is an 
individual (say 6) which bears the relation K to every individual, then 
obviously for each individual there is onc (viz. 4) that bears the relation K 
to it. Contrariwise, however, it is generally not possible to pass from a 
relative existential sentence to its absolute counterpait For the relative 
sentence affirms only that for each ) there is an x which bears the relation 
K to y, nothing is said to prevent different individuals y from associating 
with different individuals x, i.e. nothing is said that requires some x to bear 
the relation K to every y Eg in the domain of natural numbers, the 
relative existential sentence ‘( )(3x)Gr(x,))' is true because for each number 
there is a greater; however, the corresponding absolute existential sentence 
“(ax)(0)Gr(x,y)' is clearly false, since it claims there is a number greater than 
all numbers. (It will be seen in T2g below that the interchange of two 
similar quantifiers leads to an L-cquivalent formula.) 

14b. L-true biconditionals. 

114-2. Suppose 3,=2, is any one of the biconditionals (a)(1) through 
(hy) mentioned below. Suppose = j' is obtained from 

by arbitrary substitutions Finally, Iet 9, be a universal 
fr or a sequence of such quantifiers. Then the following 

is L-true. 
B.S, and S, are L-equivalent (By (A).) 
C. &'=S,' is L-truc. (By (A), in view of T12-1a ) 
D. 2/ and S,’ are L-equivalent. (By (C).) 
E. 3; and S; are mutually L-interchangeable. (This follows from 

(B), as will be shown later: cf. T15-3g ) 
F, 3, and 2,’ are mutually L-interchangeable. (By (D).) 
G. %(S;= S;) and %,(S;,'=S,') are both L-true. (By (A) and 

=%,(Z,) and W,(2;/' 
(G) and T13-3g ) 

I. %&(S,) and x, Ce) are L-equivalent, and so are %,(;') and 
x(S;'). (By (H).) 

K. Bound variables that occur may be revised arbitrarily into 
other variables. (In view of T12-2) 

=Y,(S;') are both L-truc, (By 

a, Laws of negation. 
+(1) ~Q@)F (9x) ~Fx. (By T13-5Sa.) 
+(2) ~(9x)Fx = (x)~ Fx. (By (1) and T8-6i(5), substitut- 

ing *~ Fx’ for *Fx’.) 
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7142 a. +(3) (x)Fx = ~(9x)~Fx. (By (1) and T8-6i(5).) 
+(4) (Qa) Fx = ~(x)~ Fx. (By (1), substituting ‘~ Fx’ for 

‘Fx.) 
(5) ~(x)(Fx> Gx) = (9x)(Fx.~ Gx). (By (1) and T8- 

6h(1) ) 
(6) ~(x)(Fx > ~Gx) = (3x)(Fx.Gx). (By (5).) 
(1) ~Qx)(Fx.Gx) = (x) (Fx > ~Gx). (By (6) and 

T8-6i(5) ) 
(8) ~(3x)(Fx.~Gx) = (x)(Fx>Gx). (By (5) and T8- 

6i(5).) 
b. Laws of negation for several similar quantifiers. (Each of 

the following four formulas—which are analogous to 
(a)(1)-(4}—contains a sequence of n universal quantifiers 
(n>2) indicated by ‘(x).. (z)', a corresponding scqucnce of 
n existential quantifiers indicated by ‘(3x)...(3z)' with the 
samc variable in corresponding quantificrs, and an n-place 
predicate variable ‘K* followed by a sequence of n individual 
variables indicated by ‘x...z’ ) 

(1) ~(x)...(2)(Kx 2) = (9x). -(32)(~ Kx... 
(2) ~(x) . (32)(Kx. z) = (x) .) 
(3) (x)...(z)(Kx. « 
(4) (ax) (2)(Kx...z) = ~(2)...(2)(~Kx...2). 

c. Distribution laws. 

+(1) (x)(Fx.Gx) = (x)Fx.()Gx. (By T13-3a ) 
+(2) (ax)(FxVGx) = (ax)FxV(qx)Gx. (By (1), (a)(4), 

T8-6g(1), (3) ) 
d. Shifting a universal quantificr. 

(Recall from previous explanations (12a) that in the formu- 
las listed under (d), (c) and (f) below it is permissible to 
substitute for ‘p’ any scntential formula in which ‘x’ does 
not occur free.) 

(1) alae = 
(2) ()(FxVp 

pV(x)Fx. (By T13-5b ) 
(Fx) Vp (By (1).) 

(3) (x)(p. Fx) = p.(x)Fx. (An analog of T13-5b.) 

(4) ()(Fx.p) = (x)(Fx).p. (By (3).) 
(5) (x\(p> Fx) = [p>(x)Fx]. (By (1) and T8-6j(1).) 

e. Shifting an cxistential quantifier. 

(1) (9x)(pVFx) = pV(3x)Fx. (An analog of T13-5b ) 

(2) Gx)(FxVp) = Gx)(Fx)Vp. (By (1).) 
(3) (3xXp- Fx) «(3x)Fx. (An analog of T13-5b.) 

(4) Gax(Fx-p) = Gx(Fx).2. (By G3).) 
(5) (ax)(p> Fx) = [p>(3x)Fx]. (By (1) and T8-6j(1).) 
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714-2 f. Shifting and altering a quantificr. 

o) GASP = [(gx)(Fx)>p]. (By T8-6j(1), d(2) and 
a(2) 

(2) (3x)(Fx> p) = [(x)(Fr)>p]. (An analog of (1).) 

g. Interchange of two similar quantifiers. 

+(1) CO) Kxy = (y)(x)Kxy. (By RI I-Ie.) 
+(2) GaGa y)Kxy = Gy\(3x)Kxy. (By RII-1h.) 

h, Permutation of n similar quantifiers (m > 2) 

(What was said in (b) above applies here regarding the 
notations ‘(x). (2), (3x). zy’, ‘K’, and *x..z By 
*.(z). (x)... is meant an arbitrary permutation of the 
quantifiers i the sequence ‘(x)...(z)’ and similarly for 

*(92).(3x) 
2) (x)..(Kx...2). (By RI-1g,) 
1(4z).(3x) (Kx..z). (By R- 

Remarks on the formulas inT2. Formulas (a)(1) and (a)(2) tell us how to 
transform the negation of a universal formula or of an existential formula; 
the negation sign is moved over the quantifier onto the operand, and the 
quantifier itsclf converted to one of the opposite sort. These transforma- 

tions are cntircly plausible (cf. 9b). If thc domain of individuals is finite, 
(a)(1) und (a)(2) correspond to De Morgan's laws (T8-6g). We can sec this 
as follows: Suppose the rulcs of a certain language system show that the 
domain of individuals comprises a fixed finite number n of individuals; let 
these # individuals be denoted by the individual constants ‘a,’, ‘ay’, .. . ‘a,’. 
Now in this system the universal sentence ‘(x)Px' is synonymous with the 
n-tuple conjunction ‘Pa,.Paz... .Pa,’, and the existential sentence ‘(3.x)Px’ 
with the n-tuple disjunction ‘Pa, V Pa,V..V Pa,’. Here, therefore, *~(x)Px’ 
is ‘~(Pa,.Pay.. ..Pa,)’ which by T8-6g(4) is L-equivalent to *~ Pa, V ~ Pa, 
V.. V~Pa,’, and this last in turn is ‘(3x)~Px'. The same applics to 
‘*~(3x)Px'. — Formula (a)(3) indicates the possibility of defining the 
universal quantifier in terms of the existential quantificr; and (a)(4), the 
possibility of defining the latter in terms of the former. — From (a)(8) we 
sec that a universal conditional, e.g. a law of naturc, is synonymous witha 
certain negated existential sentence: “all crows are black” has the same 
meaning as “there is no non-black crow”. — Formulas (b) are similar to 
(a)(1)-(4): a continuous sequence of two or more similar quantifiers may be 
treated as a single such quantificr. 
From (c)(1) we sce that a universal quantifier distributes over the com- 

ponents of a conjunction, and from (c)(2) that an cxistential quantifier 
likewise distributes over the components of a disjunction. [Note that both 
these formulas give rise to L-equivalences, i.c. each direction of a formula 
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gives an allowable transformation. By contrast, the distribution of a 
universal quantifier over the components of a conditional or of a bicondi- 
tional is permissible only in one direction (cf. T1-d(1), c(9)).] 
The formulas (d) indicate certain cases in which the universal quantifier 

may be relocated: a sentential formula with no free occurrence of the 
quantificr-variable may at will be inserted into (or removed from) the 
operand, provided this formula is one of the components of a conjunction 
or of a disjunction, or the antcccdent of a conditional. — Formulas (e) 
indicate that the cxistential quantifier may be similarly relocated in similar 
cases. — In contrast to (d)(5) and (e)(5), formulas (f) assert that if the 

sentential formula in question is the consequent of a conditional, the 
quantifier is not simply to be relocated but must also be converted into onc 
of the opposite kind. E.g. (f)(1) says in effect that L-equivalence holds 
betwcen the two formulas which correspond respectively to the following 

two word-language sentences about the inhabitants of Sodom (who here 
constitute the domain of individuals): ‘For cach Sodomite it is the case that 
if he is righteous, then Sodom will be sparcd”, and “‘If at Icast one Sodomite 
is righteous, then Sodom will be spared”. — Formula f(2) is seldom used; 
the operand of an cxistential quantifier is usually a conjunction, and only 
rarely a conditional. — Finally, (g) and (h) indicate that the members of a 
sequence of two or more similar quantificrs may be reordered at will. 

J4c. Exercises. Translate each of the following sentences into our symbolic language; 
more specifically, give each sentence two symbolic translations (which by T2a(1),(2) are 
L-equivulent to cach other), viz. one with a universal quantifier, the other with an existen- 
tial quantifier. — 1, “No (thing) is spherical." ((a) “There is nothing ..”, (b) “Each 
(thing). not .."). — 2. “0 is not greater than any (number) " —- 3, “Not every (number) 
is greater than 0.’ “There is a (number) such that no (number) is smaller than it.” 
—5. “For every (number) x it is the case that no (number) is both greater than and 
smaller than x “—Translate cach of sentences (6) and (7) below into our symbolic langu- 
age; then use T13-1(1) to obtain from cach of these translations a corresponding existential 
sentence; and finally, translate each of these existential sentences back into the word 

“The moon is spherical." — 7. "2 is a prime number and cven,"—In 
fh follows “‘taut" indicates the application of a tautological formula (eg. 

‘one of the formulas listed in T8-1 or in T8-6). Part (a) of the exercise is worked out as an 
example, — 8. Give a derivation for each of the following cases of L-implication: 

a) '~(x)(Fx> Gx)’ and ‘(x)(Hx> Ga)’ L-imply °(3x)~ 
()(Hx> Gx) i. 
~ (x) Fx> Gx) Zz 

(2) T2a(s) — (3x)(Fx.~Gx) 3 
(3) Tigh) (3x)Fx.(ax)~Gx 4. 
(4) taut. Qx)~Gx 5. 

6. 
7 
8. 
9, 

() Tid) = @)Hx>(X)Gx 
(8) T2a(l)  ~()Gx 
(6) (7) taut, ~(OHx 
(8) Tal) (3x)~ Hx 

b) *()(Fx>p)" and *~p' L-imply (x)~ Fx’. (Hint: use T2f(1).) 
©) (x)(Hxz> Hax)' and ‘Haz’ L-imply ‘Haa’. 
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d) "(x)(Fe= Gx)" and ‘Ga’ L-imply "(ay)" 
*~(39)~Gy" L-imply 

and "(3y)((3z)(Hzy).Gyx)’ L-imply “(3w)(Giwx.Gww)'. 
8) ‘(x)Hax’ L-implies *(x)(3x)Hxx'. (See the remark on RI1-1g,) 
h) 'GbV Fb" and *(x)~ Fx" L-imply "(3x)Gx" 
1) °G)@)\(Mxyx > Hay and "(z)(Maza)’ L-in-ply *Haa’. 
D ‘@NG) xy L-implies (gz)Hz2". 

“x. Gx)’ L-implies "(3y)(FyV Gy)’. 
DON Hay, "GO Hay.Hyz> Hxz)', and "(x))(Hxy'> Hyz)’— L-imply 

“()Axx'. 

Note: 1) is of special interest in the study of the theory of relations. The second premise 
says that is transitive, the third premise that # is symmetric, and the conclusion that 
His totally reflexive (cf. 16¢ and T31-1). 

15. DEFINITIONS 

1Sa. Interchangeability. We are now in a position to state theorems on 
interchangeability which are more gencral than thosc of 8b. The source of 
this increased generality is in the fact that herc the component formula 
subject to interchange can occur not simply as a component of a sentential 
conncctive, but as an opcrand as well. 

Suppose ©, =;, S;, S,, and S,, are sentential formulas. We shall say that 
GS, and Sp are equivalent respecting S, and =, provided ()(F,=S,) L- 
implies ( )(S,= Sm), where *()' stands for a sequence of universal quantifiers 
—onc for each of the variables (except sentential vartablcs) that occur free 
in the operand in question, 

The notion just introduced is used in the following three theorems. 

TIS-1. Let S,, S, and S, be arbitrary scntential formulas, & an arbitrary 
universal quantifier, and © an existential quantifier. For each 
of the following pairs of sentential formulas it is then the case that 
the two given formulas are cquivalent with respect to S; and S,: 

a, ~G,and ~&,. (Each of (a) through (i) follows from T8-3b and 
T13-3e.) 

b. GV S, and SVS, 
ce. SVS, and SVS, 

d, S).G, and S.S,. 

e S,.S, and S,.S). 

f, S,>S, and S,>S,. 

. S, 2S, and S,.> 5). 
=, and SG =G,. 

and S,=S,. 

4(S,) and U(S,). (By T14-1e(9).) 
. E(G;) and E(G,). (By T14-11(5).) 

» S, 
S 
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715-2. If two sentcntial formulas arc equivalent respecting a second pair, 
and again thesc latter two arc cquivalent respecting a third pair, 
then the two formulas of the first pair are equivalent respecting the 
two formulas of the third pair. 

J15-3. Interchangeability. Suppose 3, and =, are arbitrary sentential 
formulas. Suppose S,' is constructed from =, and possibly other 
arbitrary formulas by means of connectives and quantificrs. And 
suppose, finally, that S,’ is obtained from &;' through the replace- 
ment of &; by S,. Then the following hold: 

a. =,’ and &;' are equivalent respecting S, and GS, i.e. 
()(S;=S;,) L-implies ()(S,'=;'). (Proved below.) 

is L-truc. (By (a).) 

S;’.. (By (a) and T13-1b.) 
S,') is L-true. (By (c).) 

:j).S' > is L-truc. (By (d) and T8-61(1).) 
f. ()(S;=S,) and S;' together L-imply =,’. (By (c).) 

+g. If S, and &; are L-cquivalent, then 5,’ and G,' are also 
L-equivalent. (Proved below.) 

Acomment, before proving T3a and T3g above. From T3g we see that 
L-equivalent sentential formulas are L-intcrchangeable not only in molecu- 
lar, but in gencral formulas as well; and further, that here it is a matter of 

indifference whether the variables occurring frec in S, are bound or free in 
e. 

Proof of T3a. In view of T2, (a) follows by application of appropriate parts of Tl — 
first, to the smallest component formula of 2’ in which ; occurs in the place in question 
as an operand or as u truth-functional component, and then, step by step, to more in- 
clusive component formulas until finally </’ itself is reached 

Proof of T3g: If €) and are Leauivalent, then = 2 is L-true and so also (by 
TI3-Ie) is (=). Thus, by (), =; 
j' are L-cquivalent. 

3’ is L-truc, whence we sce that 2’ and 

L-implied by the first two ]--2. According to T8-6i(1), 
L-equivalent. If, now, it happens that the fuctual 

sentence ‘(x)(3y)(( is given, then by T3g this factual sentence can be 
transformed into the L-equivalent one *(x)(3 ¥)[(~ Rxy'>~ Px) V QT. 

15b. Definitions. To define a new sign on the basis of previous signs is to 
introduce this new sign in such a way that its meaning is specified in terms 
of the oldcr signs. A definition must enable us to climinate the new sign for 
any given sentence containing it, i c. to transform the given sentence into an 
L-equivalent one that no longer contains the new sign. (This transformation 
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must be possible at least for sentences of certain simple forms, though not 
necessarily for all sentences in general.) 

It is often the case that a new sign is taken to be synonymous with an 
expression composed exclusively of previous signs, e.g. the new sign ‘A’ 
might be introduced as an abbreviation for the sentence ‘PaV(x)Qx’, 
Such cases are not the only oncs, however. Suppose we want to introduce 
the designation ‘Q” for the property affirmed of the individual a by the 
sentence ‘PaV Rab’. Here there is no expression composed of old signs 
whichis synonymous with ‘Q’, What we need in this case is e.g. a convention 
which, formulated in words, runs as follows: “The sentence ‘Qa’ is an 
abbreviation for ‘Pa V Rab’, and similarly for other full sentences obtainable 
from *Q’.” But T3g enables us to state this convention simply and directly. 
Let us take the sentential formula ‘Qx = PxV Rxb’ as a definition. In so 
doing, we impart to the predicate ‘Q" such a meaning that the definitional 
formula (and thus every substitution instance of it) is true—true, moreover, 
not on factual but on logical grounds, i.e. strictly on the basis of meaning, 
Naturally, therefore, we want to extend our usc of L-terminology so that the 
definitional formula and all its substitution instances count as L-truc, 
Suppose that this is done. Then the biconditional (the definition) is taken 
as L-truc; and in consequence the two components of the biconditional are 
L-equivalent, and hence L-interchangeable, and the same holds for any sub- 
stitution instance of the biconditional. Thus e.g. ‘Qa’ can always be trans- 
formed into ‘PaV Rab’, and conversely (not only if one of these sentences 
occurs independently, but also if it occurs as a component part of a larger 
sentence); and further, in any context ‘Qx’ can be substituted for ‘Px V Rxb’ 
(or conversely), no matter whether ‘x’ is bound or frec in that context. 

The mode of definition suggested in the previous paragraph applies 
equally well to the definition of a many-place predicate. E.g. a definition 
of the two-place predicate ‘R’ can have the form ‘Rxy J.’ where the 
right component of this biconditional is a sentential formula in which at 
most the variables ‘x’ and ‘y’ occur free. 

Every definitional formula has two components, onc containing the new 
sign and the other not. The component containing the new sign is called 
the definiendum (c.g. ‘Qx" and ‘Rxy’ above are definicnda); we shall follow 
the practice of writing the definiendum as the first, or left, component of the 
definition. The other component of a definition contains only earlier 
signs; it is called the definiens. All variables that occur free in the definiens 
must likewise occur free in the definicndum, and indeed each such variable 
must have precisely one occurrence in the definiendum. (More exact 
characterizations are given in 2le.) The definition of a scntential constant, 
say ‘A’, has the simple form ‘A = ...’, where the definiens *...’ must be closed, 
(In introducing an abbreviation for an open sentential formula, we can use 
as definiendum not a sentential constant but only a new predicate with 
appropriate arguments, e.g. ‘Ox’ for *RaxV Px’.) 
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15¢, Examples. 
I. Domain of individuals: human beings. Primitive signs already at hand: ‘Par 

(“parent”) and ‘4 (“male”). Definitions: 
1. (“Human being") Hu(x)= ayy Parte Pie): 
2, (oFemule”) Fllx)= Hudx).~ 

(“Father”) Fa(x,)) = Par(x,y). Mice). 
‘Child”) Ch(x,)= Par y,x). 
Son") Sonx,3:)= Ch(x,3).MI(x). 

& Grandparent”) GrParGx)=(30(Partx,2).Part2,))) 
Other concepts, ¢ g “Brother”, will be defined later (J7b). It should be remarked that 
some of these definitions can be formulated in an essentially simpler way in language C 
(Cf. 30¢.). 

Il, Domain of individuals: natural numbers Suppose the predicates *E” (two-place) 
and *Prod!” (three-place) are already at hand, i.e. are cither primitive signs or previously 
defined signs (let “E(a,b)" mean “a is equal to ”, and *Prod(a,byc)" mean “a is the product 
of band c"). How, then, can we introduce by definition the (two-place) predicate ‘Div’ 
and the (one-pluce) predicate ‘Prim’, where * Div(a,b)" stands for “a is divisible by B” and 
*Prim(x)’ means “‘x is a prime number”? These definitions may be phrased as follows: 

1, Div(xy) = (32)Prod(x,y,2). 
8. Prim(x)=())[Div(x,y)> E(y,1) V EU) ]. 
Exercises. 1. Continuing the list of definitions given in I above, define the following 

predicates: 1. ‘Mo’ (“Mother").—2. *Dau’ (Daughter). —3. ‘GrFa’ (“Grand- 
father") — (“°Grandmother™). — 5. ‘GrCh’ (“Grandchild’’), — 6. ‘GrSon’ 
(Grandson’ A ‘Dau’ (“Grand-daughter’ In defining the foll i 

use ‘Hus’ (“Husband”) as a third primitive sign. —8. ‘Wif’ (“wil 
i (*Father-in-law”). — 10 *MoL’ (“Mother-in-law”). — 11. *SonL’ (“Son-in-law’ 5 

*DanL’ (“*Daughter-in-law”). 11, Domain of individuals: natural numbers. In exercises 
13 and 14 below, use the predicates *E” and ‘Prod’ (us in Example Il above), the predicate 
‘Sun’ (where *Sun(a,b,c)’ is read “a= b+c"), and the individual constants ‘I’ and ‘2° in 
their usual sense. — 13, Define the following predicates (cf. 2¢(3)): 

a) ‘Even(x)’ (x is even). 
b) ‘S(xy)" (x is the immediate successor of y'). 
©) ‘Gr(xy)’ (vis greater than »). 
d) ‘Sn(xy)’ (x is smaller than»). 
©) ‘Sq(xy)’ (eis the square of »). 
f) ‘Dif(xyz)" (x=)'-2). 
B) ‘Precl(xy)' (x is the immediate predecessor of y). 

— 14, Formulate the following, using the signs indicated above under exercise 11 (but 
not those defined in (13)): 

a) xt yaytx. 
b) x-(y-z)=(x 9)-2. 
c) The square of a prime number greater than 2 is not cven. 
d) Ify is the successor of x, then the difference between y2 und x2 is x+y. 

16. PREDICATES OF HIGHER LEVELS 

16a. Predicates and predicate variables of different levels. Suppose a 
certain theory, formulated in our symbolic language, asserts a complicated 
sentence G, having one or more occurrences of the predicate ‘P,’; let 
“.P,.P}..’ represent the sentence G,. Suppose, further, that this theory 
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asserts similar sentences G, and ©, phrased respectively in terms of 
predicates “P,’ and ‘Ps’; i.e. G2: ‘..P2..P2.." results from G, by writing ‘Py 
in place of ‘P,’, and likewisc for S;: *..P3..P3..’.. And suppose, finally, that 
regarding other propertics P, and Ps our theory asserts in sentences S4 and 
Ss the opposite of what S, asserts for P,; thus Sq: ‘~(..P4..P4..)’ and 
Ss: ‘~(..P5..Ps..)'. [The dots stand for the other symbols in the sentence; 
according to our presupposition, thesc symbols arc the same in cach of 
S1, S2, S3, Sq, and Ss.] Now, it is useful to avoid writing out these long 
sentences in full cach timc. To this end, therefore, we naturally introduce 
abbreviations. E.g. we could introduce ‘M,(P,)’ as an abbreviation for 
G,. Here ‘P,’ appears as an argument-cxpression, and ‘M,’ as a sign of a 
new sort—a predicate differing from the predicates uscd heretofore in that 
its argument-expression is not an individual sign, but again a predicate, 
Following out the parallels between S, and S, S3, S4, Ss, we would now 
use similar abbreviations for these last four sentences, viz. ‘M,(P,)’, 
“My(P3)', ‘~ M(P4)’, *~M(Ps)’. 

Predicates whose argument-expressions are individual signs (and this is 
the case for all predicates considered to date) are called predicates of the 
first level (or order). A predicate whose argument-expression is a predicate 
of the first Jevel (as in the case c.g. with the predicate ‘M,’ introduccd just 
above) is called a predicate of the second level. When, in turn, predicates 
of the second order are taken as argument-expressions, we arrive at predicates 
of the third level Individual signs are said to be of zero /eve/ in this context 
Also, we wish to admit many-placc predicates of various levels, i.c. sentences 
of the form ‘M,(P,Q)’, ‘M,(P,Q,R)’, etc. The argument-cxpressions in the 
different places of such a predicate do not themselves all nccd to be of the 
samc level. E.g. we can legitimately abbreviate a scntcnce P..’ by, 
say, ‘M,(a,P)', in which argument-expressions at the first place of ‘M,’ are 
of zero level, while thosc at the second place arc of the first levcl. If level 
nis the highest of the levels of the argument-cxpressions for a predicate, 
then the predicate itself is said to be a predicate of the (n+1)th level. E.g. 
the predicate ‘M,’ just mentioned is of the sccond level. 

Earlier we used individual variables along with individual constants to 
make possible the assertion of universality or existence respecting the 
objects of some domain. Hcre, we wish to makc similar usc of predicate 
variables (of any desired levcl) along with predicate constants. We shall 
admit such predicate variables not only as free variables, but also as variables 

in universal and existential quantifiers. (To date we have used predicate 
variables of the first Icvel only, and uscd them simply as free variables. 
Cf. 10.) In so doing, we makc it possible to assert universality or existence 
respecting some domain of attributes (properties or rclations). 

As predicate variables of the first level we shall continuc to use ‘F’, ‘G’, 
‘H’, ‘K’. Now, given a sentence S,: ‘..P..P..’ containing a first-level 
predicate P, we can state that what S, says about property P does in fact 



16, PREDICATES OF HIGHER LEVELS 67 

hold for every property (of individuals comprising the domain in question) 
by writing: ‘(F)(..F..F..)' (read: “For every F, ..F .F..”). We can also state 
that what S, says about property P docs in fact hold for at Icast onc property 
of individuals (Icaving open the question whcthcr P is that property) by 
writing: ‘(3F)(..F..F..)’ (read: “For at least one F,. "; or “For some F, 
..; or “There is an F such that ..”). 

These remarks about first-level predicates apply without change to highcr- 
level predicates. Further, what was said in 10b regarding the intensions 
and extensions of (first-level) predicates may by analogy be carried over to 
predicates of higher levels: the intensions of highcr-level predicates are 
attributes (properties or relations) of higher levels, and their extensions arc 
classes of higher levels. And as in 10 and 11, so here the only values we 
need to consider in making value-assignments to predicates of highcr levels 
are the extensional values, i.e. the classcs of higher Icvels. The definitions 
of L-conccpts may be brought up unchanged from § and 6, the notion of 
value assignment now bcing undcrstood to include the assignment of 
values to higher-level descriptive predicatcs and predicate variables. (In 
our subsequent application of these L-concepts, however, we shall usually 
find it simpler to forego the technical method of valuc-assignments. Thus, 
in showing a certain formula to be L-true we shall ordinarily be content to 
make intuitively clear that this formula holds “‘in all possible cases’’.) 

16b. Raising levels. Consider any L-true sentential formula containing 
as individual signs and predicatc signs only variables, not constants; c.g. 
€: ‘(x)(Fx)> Fy’. Write down a corresponding scntence 32 with first- 
level predicate variables where S, had individual variables and second-level 
predicate variables where S, had first-level predicate variables; c.g. 5). 
‘(F)(N(F)) > MG), where ‘N’ is a predicate variable of the second level. 
Now &, is cvidently L-truc also. For if every first-level property has the 
second-level property N, then certainly P has property N; hence ‘(F)( N(F)) 
>MPy is L-true. The same claim can be made for any other first-level 
property instead of P. Thus &, is also L-true. Similar considerations and 
results would obtain had we employed in the same way predicate variables 
of consecutive, but still higher, levels. Further, for cvery other sentential 
formula previously specificd as L-true and containing no descriptive 
constants, it can be shown that the corresponding formula appropriately 
phrased with higher-level variables is likewise L-truc. Thus we have the 
following theorem (the technical proof of this theorem appcars to be unduly 
complicated, and so will not be given here): 

T16-1. Suppose &, is any onc of the sentential formulas specificd as L-true 
in T14-1 or T14-2. Suppose the scntential formula =; is obtained 
from &, by replacing the individual variables of S; with nth-level 
predicate variables and the (first-level) predicate variables of S; 
with (1+ I)th-level predicate variables. Then <, is also L-truc. 
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Substitutions for highcr-Ievel predicate variables—both simple substitu. 
tions and formula-substitutions—are accomplished in cxactly the same 
fashion as they arc for first-level predicate variables. Theorems T12-1 and 
T12-2 hold here by analogy, as do the theorems in 13 and 14 for quantifiers 
with predicate variables of arbitrary levels. 

Note, Our TI above validates raising levels only in certain L-true sentential formulas, 
This practice is also valid for every other L-true sentential formula considered to date, 
provided the formula has variables - not constants—for its sentential signs, its individual 
signs, and [ts predicate signs However, the practice is not generally applicable to 
arbitrary L-true sentential formulas of this sort, but only to those formulas that are L-true 
respecting any (non-empty) domuin of individuals, regardless of the number of individuals 
therein The technique of raising levels cannot gencrally be used in connection with 
sentential formulas whose validity depends on the number of individuals in the domain 
Cf. the different forms possible for P12 in 22a, b and 37¢, and other sentences related to 
such a primitive sentence). 

46c, Examples, Domain of natural numbers 

The following two assertions hold for natural numbers: 

(1) )GM2)(Sm,3'). Sm y2)> Smilx,2)). 
(2) (XOME)(Gr (x42) « Graz) > Gi (x,2)). 

Since sentences of this form occur frequently, it is worth while to introduce an abbrevia- 
tion for them, Relations which satisfy the condition expressed in (1) and (2) are said to 
be transitive relations, Thus (1) says that Sy is transitive, and (2), that Gr is transitive, 
Being a property of relations, not individuals, transitivity is to be cxpressed in our sym- 
bolic language by a second-level predicate, say ‘Trans’. We introduce this predicate by 
the following definition : 

(3) Trans( 1) = 0X2) H 03) H042)> H(x,2)). 
Substituting for the free (first-level predicate) variable *H’ the constant ‘Sm’ e.g., we 
obtain 

(4) Trans( Sm) =(x)(}(2)(Sm(x,y)) Sm y,2)> Sin(x,z)). 
Now, in view of (4) and the interchangcability theorem T15-3, we can always replace the 
original sentence (1) with the abbreviation *Trans(Sm)', cven if (1) occurs as a component 
part of another sentence; and conversely, any occurrence of this abbreviation can be 
replaced by sentence (1). Similar remarks apply to (2) and its abbreviation *Trans(Gr)’, 
(Later, in 31c, simplified definitions will be given for *Trans’ and for the predicates "Syn", 
*Refl’ and ‘Reflex’ cxplaincd in the exercises just below.) 

Exercises. J, By analogy with ‘Trans’, define the sccond-level predicate ‘Sym’, where 
‘Sym(RY' means “(The relation) R is symmetric”. We say that R is symmetric just in 
case: for any (individuals), if onc bears the relation R to a second, then the sccond also 
bears the relation R to the first. The constant *R’ should not appear in the definition, 
but rather some corresponding predicate variable, e.g. “H’.— 2. Define the second-level 
predicate *Refl’, where ‘Refi(R)’ means “the relation R is reficxive". We say that R is 
reflexive just in case: for any individual, if it bears the relation R to some individual or if 
some individual bears the relation R to it, then it bears the relation R to itself — 3, Define 
the second-level predicate *Reffex(R)’, where ‘Reflex(R)' means “the relation R is totally 
reflexive’. We say that R is totally reficxive if every individual (in the domain) bears the 
relation R to itsclf.— 4. Define the predicate ‘NSm', where ‘NSm(R,a)" means “the 
relation R is not symmetric with respect to the individual a”. We shall say that R is not 
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symmetric with respect to the individual a if either @ bears the relation R to some ind?- 
vidual which does not bear the relation R to a, or some individual bears the relation R to 
qand @ does not bear the relation R to this individual. What is the level of “NSin'? 

17. IDENTITY. CARDINAL NUMBERS 

17a. Identity. Thc sentence ‘a=4’ is taken to mcan that a and 6 are 

jdentical, ic. @ is the same individual as b. The sign ‘=’ is called the 
identity sign. In our present symbolic language A we shall usc the identity 
sign only between individual expressions, (Regarding other uscs of *=', 
cf. 29a.) Clearly, all substitution instances of ‘x=x', e.g. ‘a=a’, hold— 
and in fact are L-true, by RII-1(i). Consequently, x’ is also L-truc, and 
s0 likewise is ‘(x)(x=x)', The sign ‘4’ is uscd for “not-identical”. 
When a sentential formula involving ‘=* or ‘#" occurs as part of a 

larger context, the parentheses enclosing this formula may bc omittcd (see 
3c, Rule (1)). If @ is the same individual as 4, cvcrything that can 
correctly be said about a must also hold for 5; i.e. ‘a=b" (S,) L-implies 
\(F\(Fa > Fh)’ (&2). Sentence 3, says in effect that whatever property 
a has, 6 has also. It is an important fact that S) also L-implies S;. For 

one of the properties @ has is that of being identical with a; and hencc, 
by G2, 6 must have this property, too. In technical terms, thc derivation of 
G, from S; is as follows: By analogy with T13-Id, scntence S, L-implics 
every substitution-instance of ‘Fa> Fb’ obtained by substituting for the 
free variable ‘F’, Following the procedures of formula-substitution, in 12c, 
let us substitute ‘a=x" for ‘Fx’, viz. Ict us replace ‘Fa’ by ‘a=a’ and ‘Fh’ 
by ‘a=b". There results the sentence ‘a=a>a=h", Since ‘a=a' is L-true, 
‘a=’ follows. Thus S, L-implics S,. We conclude from all these observa- 
tions that S; and S) arc L-equivalent. 

Because of the L-equivalence between S, and &,, we can define the 
identity sign in the following way: 

DI7-1. a. (x=y) = (F)(Fx> Fy). 
b. (x#y) = ~(x=y), 

The first theorcm below expresses the familiar fact that identity is 
totally reflexive, symmetric and transitive. The second theorem tells 
us that, given a sentence expressing an identity, one member of this identity 
can be replaced at any of its occurrences in any sentence by the othcr member 
of the identity (in view of the symmetry of identity (T1b) this remark applies 
indifferently to either the first or the second member of the identity, as the 
phrasing indicates), 

T17-1, The following sentential formulas are L-true: 

x). 

(y=2z) > (x=2z). 
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T17-2. Suppose s 
of) ‘a’ Suppose ‘..b..” is a sentence obtained from 
replacing * a’ by ‘h’ at onc or more (but not necessarily au occur 
rences of ‘a’, Then ‘...b...’ is L-implied by ‘a=’ and ‘. 

17b. Examples, Many concepis that naturally fall within the system of family ‘iat 
Specified in 15¢ (11) can only be defined there with the help of such auxillary devices as 
ihe identity sign or the use of predicate variables in quantifiers. Consider e g. the relation 
Brother, where “a is a brother of b™ is written “Bro(a,b)'. 1 might be thought that 
"Bro(a,b)’ could be explained within the system of 15¢ (11) simply by saying: *Bro(a,by’ 
means the same as “a is a son of 4's father, and a is a son of b's mother” However, this 
explanation is inadequate, for it Is also the case that a is a son of a’s father and @ is a son 
of a’s mother-—and we do not wish Io count a as a brother of himself, The definition of 
*Bro’ must therefore be so formulated as to exclude this possibility of identity, 4 
definition which does so Is the following: 

Bro(x,¥) = (3 uy Sonx,u) . Falu,y")) -(4vX Sona). Mo(v,y)) x# y 
(A simpler delinition of * Bro" 's put forward in language C, 30c ) 

Exercises. Continuing in the fashion of the previous paragraph, define: J. “Sister” 
— 2, “Sibling” (without using “Sister") - 3. “Cousin”. — 4, Recalling 15e (1), trans- 
late the sentence "2 is the only even prime” into varlous symbolic forms, viz the symbolic 
counterparis of (a) “2 is an even prime, and every other (number) i is not " C‘other™ or 
“distines” is symbolized by "4 *), (b) "2 is. , and there is no other .."', (c) “if x is identi 
cal with 2, v is an even piime; and converscly (ie if x fs an even prime, then . )"; (d) the 
biconditional that results from combining (according to T8-6f(1)) the two conditionals of 
(c).- Translate: 5, “Every (natural number) has at most one predecessor" (*Pr ec"); i.c, 
“If. isa predecessor of z and y' is a predecessor of z, then x and y’ arc the same (number)", 
- 6, “Every (natural number) precedes one and only onc (number)", i.e... is a pre. 
decessor of ut least one .., and ... of at most one “(the second part ere being analogous 
to (S)).— 7. “For (two) distinct (numbers) 1 and 3 it is the case that either x is less than 
4 ory is less thanx, (Hint: in many situations of this sort, “two” can be expressed by 
“not-identical” ) 

17c. Cardinal numbers. First, with a view to simplifying the verbal 
explanations that follow, Ict us introduce several new turns of phrase into 
the English word-languagc. (Note that these new phrascs are introduced 
into the word-languagge, not into the symbolic language.) Instead of ‘a has 
the property P”’, we shall sometimes say “a is a P-individual”, or bricfly 
“ais a P”: or again “a is an clement of the class of those individuals having 
property P”, or briefly “a is an clement of class P". Instead of “there are 
cxactly five individuals with property P” or “there are exactly 5 P-indi- 
viduals”, we shall also say “the property P (or: the class P) has the cardinal 
number 5”, or briefly “P has cardinal number 5”. 

Our ultimate purpose in this section is to explicate the cardinal numbers 
0, I, 2, etc., i.e. to establish precise definitions that comprehend the usual 
meanings of thcsc number-signs or numerals ‘0’, ‘1’, ‘2’, etc. But, by the 
remarks just above, having e.g. the cardinal number Sis a property of certain 
properties (or classes); hence, this property of having cardinal number 5 is 
to be symbolized by a predicate of the second level. Let us simply choose 
the numeral ‘5’ as this predicate. Thus for “‘P has cardinal number 5” 

is a sentence containing (one or more occurrences 
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we may write ‘5(P)', a formulation clearly indicating that ‘5S’ is a second- 
level predicate with ‘P’ as its argument-expression. By analogy, we write 
‘Q(P)' for “P has cardinal number 0” (i.c “there are no P-individuals”); 
*\(P)' for “P has cardinal number 1” (i.c. ““thercis exactly one P-individual"); 
etc. 

The precise definitions of predicates ‘0’, * etc., appear in D3 below, 
To simplify the formulation of these definitions, it is convenient to introduce 
first (in D2) certain auxiliary predicates ‘1,,", ‘2,,’, etc., which will seldom be 
used hercafter. By ‘I,,(P)’ we mean “there is at least one P-individual”, 
by ‘2,(P)' we mean “there are at least two P-individuals”; etc This last 
sentence is not to be construcd as meaning simply “there are individuals 
yand y such that x is P and y is P”, which would be true even if there were 
but one individual (say a) having property P, since ‘a’ could be put in placc 
of both ‘x" and ‘y’: if, therefore, we explain ‘2,,(P)’ as “there arc individuals 
x and y such that x is P and y is P”, we must add “and x is not identical 
with» This is the reason for the last component of the operand in D2b. 
— Finally, as a general basis for D3, we agree that “there are n P-individuals” 
means the same as “there are at Icast nm P-individuals, and there are not at 
least +1 P-individuals”, 

DI7-2. a. 1,(F) = (4x)Fx. 
be nF) = (4x3) Fx. Fy. xv). 
ce. 3,(F) = (axa y)(32)( Fx. Fy. Fe.x#y.x#2.y#2). 

Definitions for ‘4,,’, ‘5,,’, etc , arc madc analogously, 

DI7-3. a. OF) = ~1,(F). 
b. IF) = 1( FP). ~ 2 Fe 
C.F) = AF). ~3n( FP). 
Definitions for ‘3’, ‘4’, ctc, are made analogously. 

Exercises. Define P" to be such that ‘Pb" means “A is a child of a" (in this conncetion, 
use the predicate *Pur*) Now, with the help of *P’, translate the following sentences into 
our symbolic language. & (a) "a has at least 3 children”, (b)". at most 3 (ie, “.., not 
at least 4 »."):(€). « exactly 3..." --9. The exercise 8(b) suggests that “at most 2” may 
bedefined by “not at Icast 3", Define “2at', where *24¢(P)" meuns “there are at most two 
P.individuals" ‘This last is now to be construed as meaning that if individuals x,1,z have 
the property P, then . and y, or x and z, or and z must be the same individu 
Show that "2(P)' is L-cquivalent to ‘~3n(P)'. Use the theorems in 8 and 14, 
Show that the following formulas are I.-truc, using the theorems in 8 and 14 a) ‘3n(F)> 
In(F)"s b) '2(F)> Ink FY’, €) *~ CF) > mF) > 2m)". 

18. FUNCTORS 

18a. Functors. Domains of a relation. We begin with an example, 
Take for the domain of individuals the natural numbers (in so doing, we 
construe the number signs ‘I’, ‘2°, etc., as individual constants, and not as 
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second-level predicatcs as in 7c). Let ‘prod’ be such a symbol that 
‘prod(a,b)' means “the product of the numbers a and 6", The ‘a’ and ‘b’ in 
‘prod(a,h)' are referred to as the argumcnt-expressions of ‘prod’. Previously 
we spoke of ‘Pa’ as a full sentence of ‘P"; extending this terminology, let us 
speak herc of ‘prod(a,h)’ as a full expression of ‘prod’. Note that ‘prod’ is 
distinguished from predicates by the fact that a full expression of ‘prod’ is 
not a sentence but a designation for a number, i.c. a zero-level expression 
in the present context. In this respect, the sign ‘prod’ is an instance of a 
certain kind of sign for which we have a general name: we speak of any sign 
whose full expressions (involving n arguments) are not sentences as an n- 
place functor, 
+ The full expressions of a functor may (as in the case of ‘prod’ above) be 
expressions of the zero-level, i.e. individual expressions—designations for 
individuals of the domain in question, However, there are also functors 
whose full expressions are designations of attributes and hence are called 
predicate expressions (of the first or higher level), Functors of this sort 
appear in the discussion below. 

The notions to which we now turn are best introduced by another 
example, Recall the (two-place) relation Brother. If now a is a brother of 
b, we say that a is a first-place member of the relation Brother and that b is 
a second-place member, More generally, any person who bears the relation 
Brother to someone is a first-place member of the relation, and any person 
to whom someone bears the relation Brother is a second-place member of 
the relation, These notions readily extend to any two-place relation R: 
whatever individual bears the relation R to something is called a first-place 
meniber of R, and any individual to which something bears the relation R 
is called a second-place member of R. 
Now consider an arbitrary two-place relation R. We call the class of 

all first-place members of R the first domain of R and symbolize it (or the 
corresponding property of being a first-place member of R) by ‘mem,(R)’. 
The sentence “a is a first-place member of R” is rendered ‘mem,(R)(a)’. 
Notice from the sentence ‘mem,(R)(a)’ that ‘mem,(R)’ is a predicate 
expression—indeed, a one-place predicate expression of the first level, since 
it goes over into a sentence when filled by the argument-expression ‘a’, i.e. 
by an individual constant. The sign ‘mem,’ itself is a functor, since its full 
expression ‘meni,(R)' is not a sentence (but a predicate expression), 

In analogy with the above, we call the class of all sccond-place members 
of R the second domain of R and symbolize it {or the corresponding property 
of being a second-place member of R) by ‘mem,(R)’. The sentence “a isa 
second-place member of R” is written ‘mem,(R)(a)’. As before, the sign 
‘mem,’ is a functor. 

By a member of R we mean any individual which is either a first-place 
member of & or a second-place member of R, or both. The class of all 
members of 2 is called the fie/d of R, and is designated by ‘mem(R)’. A first 



18. FUNCTORS B 

place member of R which is not also a second-place member of R we call an 
initial member of R; and again, a second-place member of R which is not 
also a first-place member of R we call a serminal member (or final member) 
of R_ E.g. the relation Predecessor in the domain of natural numbers has 
for its field the class of natural numbers, has 0 for its (sole) initial member, 

and has no terminal member. 
Now let us introduce the signs ‘mem,’, ‘mem,’ and ‘mem’ into our symbolic 

language by definitions. We shall do so by way of the sentence forms 
‘mem(R)(a)’, ‘mem,(R)(a)’ previously discussed; naturally, however, we 
must employ variables (say, ‘H" and ‘x’) in place of the constants ‘R’ and 

‘a’. 

DI18-1.  mem,(H)(x) = (3 y)Hxy. 

D18-2. mem,(H)(x) = (3y)Hyx. 
18-3. mem(H)(x) = mem(H)(x)V mem, H)(x). 

In the case of an n-place (n> 2) relation 7, we speak of the first domain 
of 7, the second domain of 7, ..., the uth domain of 7; the union of these 
n domains is the field of 7. It is useful to note that if ‘P’ is a one-place 
predicate (i.e. if n=1), then ‘mem(P)’ and ‘P’ have the same meaning. 

Exercises. Using the functors indicated, translate the following sentences into our 

symbolic language (in 3-S and 8, employ the predicate “Sa “a is a father", i. 
isa first-place member of... 2, “Mothers are female". — 3, ‘9 is u square (number). 
—4 “Not every (number) is a square (number)”. — 5, “Every (number) is a square- 
root” (ie. ". a second-place member of ..."*). — 6, “Every (number) is a member of the 
relation Predecessor” (use *Pred") . —1. ie one (number) precedes another, then the pro- 
duct of the two is cven”. “The product of 2 and 18 is a square (number). — 
Translate and give proofs ‘for the following scatences, where R is a two-place relation: 
a)"Ifa@ is a member of the first domain of R, then there must be something in the second 
domain of R"; b) “If there is exactly onc member of the second domain of R and there is 
exactly one member of the first domain of &, then there are at most two members of the 
field of KR"; c) “If a is a member of the first domain of R and there are no initial members 
of R, then a@ is a member of the second domain of R". 

18b. Conditions permitting the introduction of functors. Let us admit into 
our symbolic language the practice of using functors themselves—as well 
as individual, signs and predicatcs—as argument-expressions of other 
functors or of predicates. Let us also admit into our symbolic language 
functor variables (c.g. ‘f’, *g’, etc.), and agree to use them either as free 
variables or as bound variables (cf. the end of 9a). Functor variables do 
not figure prominently in elementary matters; however, functor variables 
do appear e.g. in the theory of real numbers (a real number can be repre- 
sented by a functor in the domain of natural numbers; cf. 40d), while functor 
variables of higher levels appear in the mathematical theory of functions and 
in the (symbolic) formulation of certain quite general physical principles 
(see e.g. 41 and 51). 
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Jt is always possible to supplant an n-place functor by an (n+ 1)-place 
predicate, but the reverse is not true. Thus e.g. we have the choice of 
introducing into the language of arithmetic either the two-place functor 
‘prod’ or the threc-place predicate ‘Prod’—the sentence “a is the product 
of b and c” being rendered ‘a=prod(b,c)' in the first case, and ‘Prod(a,h,cy 
in the second, Similarly, we can choose between the one-place functor ‘sq 
and the two-placc predicate ‘Sy’; the sentcnce “a is the square of h” (i.e. the 
sentence “a= 6") is expressed by ‘a=sq(b)’ in the first case, and by ‘Sq(a,by 
in the second. 

It is possible to supplant an (n+ 1)-place predicate by an n-place functor 
only when this predicate, say 7, satisfies the following conditions; For cach 
sequence (4,43,...,4,,1) Of individuals there is one and only one individual, 
say a, such that *7(a),42,43,...,d,4 1)’ is true. Separating this “one and only 
one” condition into its two parts, we obtain the two conditions (1), (2) 
below—where (1) embodies the “‘at Icast one” feature, and (2) the “at most 
one” feature: 

Kneis 

Xn TV iXr 
(1) (2)(x3) eo X Kn BAIT 1 X2.%39 

(2) (x12) (3). 4% IT: 
x=yi) 

Xn) > 

Otherwise put, condition (1) is that of the cxistencc of a first member; and 
condition (2) is that of the univalence of 7 in respect to its first place. (In 
19, this second property will receive the designation ‘Un,’.) 

Let us examine conditions (1) and (2) by specifying them to some par- 
ticular predicates. Can the (two-place) predicate Pred (cf. 2c) bc supplanted 
by a (one-place) functor? The answer is in the negative: for while the 
predicate ‘Pred’ satisfies condition (2), it fails to satisfy condition (1) because 
0 has no predecessor in the domain of natural numbers. If now, in spite of 
this fact, we introduce e.g. ‘pred’ as the corresponding functor, we im- 
mediately encounter the meaningless expression ‘pred(0)’. Next, consider 
the relation converse to Predecessor, viz. the relation Successor which we 
designate by ‘Suc’. For each natural number there is one and only one 
Successor; hence the (two-place) predicate ‘Suc’ can be supplanted by a 
(one-placc) functor. We could e.g. introduce ‘suc’ as the functor correspond- 
ing to ‘Suc’, where ‘suc(a)’ means “the successor of a”, ic, “a+1". Again, 
consider a relation R which satisfics condition (1), but fails to satisfy 
condition (2) becausc, say, each of the sentences ‘Rac’, ‘Rbc’ and ‘a#h’ is 
true. If, despite this fact, we werc to introduce a functor ‘k’ as surrogate for 
‘R’, then ‘k(c)’ would designate indifferently cithcr a or b and so be am- 
biguous. Such an ambiguity leads to a contradiction: for in place of *Rac’ 
and ‘Rbc’ we could write ‘@=k(c)’ and ‘h=k(c)’ respectively, and hence (by 
TI7-1b,c) infer the sentence ‘a=’ in contradiction to our presupposition 
‘a#b. 
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The considerations above make it cvident that to introduce a functor into 
a language system is a scrious step requiring preliminary validation, i.e. 
requiring a picliminary check to see that conditions (1) and (2) are both 

satisficd. // these two conditions are met, it will generally prove advan- 
tageous to supplant the predicate in question by its corresponding functor — 
especially so becausc a full expression of the functor can reappear as an 
argument cxpression 

Example. Ry the use of functors, the sentence *(x)()(z)[Sucly.a). Prod(z.x,y) > 
Fuen(2)]' can be condensed 10 “(x)[Even prad( x,suc(x)))P- 

19. ISOMORPHISM 

The concepts treated in this section are dispensable for many of the simpler 
applications of symbolic logic, but for many others are of capital import- 
tance. [In the examples of such applications given in Part Il, so far as they 
are formulated in language A, the concepts defined here occur cxplicitly only 
in 43a, 46a, 51a and 53a ] 
Wc say that a two-placc relation R is one-many (or single-va/ued respecting 

us first place, or witalent respecting its first place) just in casc for each 
second-place member of X there is exactly one first-place member of R 
which bears the relation R to that second-place member, Within our 
symbolic language the assertion “R is onc-many” is rendered ‘Un,(R)’ 
Again, we say that R is many-one (or single-ralued, or univalent, respecting 
its second place) provided for cach first-place member of R there is exactly 
one second-place member of R to which the first-place member bears the 
relation R. The assertion “R is many-one™ is rendered symbolically by 
‘Un(R)' Finally, we say that R is one-one, and write *Un,,2(R)’, whenever 
Ris both one-many und many-onc, The formal statement of these defini- 
tions follows. 

DIQ-1.  Uan(H) = (x)(y)(u)( day. Huy > x=u). 
DI9-2. Uny(H) = (x)(p)(u( xy. Hxu > y=u). 

DI9-3, Uni (HH) = Un,(H). Un H). 

(Analogous concepts can be defined for relations with three or morc places, 
Thus e.g. we would take ‘Un,(T)' to mcan “the (say, n-place) relation T is 
univalent (or single-valucd) respecting its kth placc”, which is to say: it is 
not the case that there are two »-tuples of individuals that satisfy relation T 
and that differ only at the Ath individual.) 

Examples, The relation Fa (Father) is one-many, and we may correctly write *Um(Fa)', 
because cach person has exactly one father; however, Fa is not muny-one and hence not 
one-one. The relation Sq (Square) in the domain of natural numbers is both one-many 
and many-one (hence one-one, and we may write *Um,2(Sq)") since each number has at 
most one square-roo! Contrariwise, the relation Square in the domain of real numbers 
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is one-muny, but is not many-one because a positive number is the square of two different 
numbers; hence it is not one-one, The relation Pred in the domain of natural numbers 
is one-one because no number has more than one predecessor and no number is the pre. 
decessor of more than one number. Similarly, the relation Successor converse to Prey 
is one-one. And finally, in the domain of persons constituting a monogamous society, 
the relation Hus (Husband) is one-one. 4 

Let 7, and 7; be three-place rclations. Let the two-place relation R be 
such that R maps T, onto 7, ic. let R be such that the following four 
conditions are satisfied’ (1) R is one-one; (2) the members of 7; are first-place 
members of R; (3) the members of 7, are second-place members of R- 
and (4) if any threc members, say @;, 6,, ¢), constitute a triple satisfying qT 
(ie, are such that ‘7,a,b,¢,’ is true), then the members, say a2, bp, €2, related 
to them respectively by R constitute a triple satisfying 7); and conversely, 
Now when R maps 7} onto 7; (i.e. when R satisfics the four conditions just 
given), we call R a correlator between T, and 7, The definition of this 
concept depends on the number of places encompassed by 7; and 7> (in 
our illustration: threc), In what follows we set up a definition scheme from 
which can be obtained at will definitions for ‘Corr,’ (correlator for one-place 
attributes, i.c. for propertics or for classes), for ‘Corr,’ (correlator for two. 
place relations), etc., simply by substituting for ‘n’ the numerals ‘1’, ‘2’, ete,, 
as desired, In all these instances the correlator itself is a two-place relation, 

D19-4, Corr, (KyHisH2) = Uny(K). (x)(mem(H,)(x) > mem, (K)(x)). 
(x)(mnem (Hg) (x) > mem (K)(x)) « 1) (91) 2 )(V2) ++ On) On) 

[Rx v1 Kx2V2eee KX In > (Hix XrXy = Hr VeIn)] 

From D19-4 we obtain the definition of ‘Corr,’ (class correlator) as a 
special case by setting n=1, Recalling (from the cnd of 18a) that a one- 
place predicate ‘P’ has the same meaning as ‘memn(P)’, this definition of 
‘Corry’ comes out as follows: 
D19-4;. Corr\(K,F),F,) = Uny2(K).(x)(Fix > mem (K)(x)). (x)(Fyx > 

mem, K)(x)).(x)(9) [Kxy > (Fix= Fry). 

If there exists a correlator between two n-place attributes 7, and T, 

(n=1,2,...), we Say that 7, and 7) are (n-place) isomorphic to each other, or; 
T, and 7, have the same (n-place) structure. Again, the definition of 
isomorphism depends on the number n of places; as before, so here we give 
a definition scheme from which particular definitions can be obtained by 
substituting for ‘n’ the numerals ‘1’, ‘2’, etc., as desired. 

D19-5. 1s,(H,,H2) = (9K)Corr,(K,H;,A). 

Up to now the terms “isomorphic” and “structure” have been applied 
mainly to attributes with two or more places, i.e. to relations. In the case of 
one-place attributes (propertics or classes), isomorphism means the existence 
of a one-one correspondence between the two classes, viz. that the two 
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classes arc equinumcrous; and thus the structure of a class is the samc as its 

cardinal number (cf. 34c). 

Example 1. Ina group of marricd couples, let P be the class of men in the group and 
Q the class of women The relation Husband establishes a one-one correspondence be- 
fvecn Pund Q, Hence *Corrs(Hus,P,Q)" holds, From this in turn it follows that P and 
Qare equinumerous, i.e */s;(P,Q)' follows. 
Example 2, We have chosen ‘Pred to designate the relation Predecessor in the whole 

domain of natural numbers (the class comprising 0,1,2,3, etc.); now let ‘Pred be used to 
designate the relation Predecessor in the restricted domuin of natural numbers excluding 
ero (ihe class comprising 1,2,3, etc.). The two relations Prec! and Pred! ure readily seen 
10 be isomorphic, in view of the following coordination, let 0 (as a member of *Pred') 
be coordinaicd with | (as a member of *Pred"*), | (as a member of *Prec*) be coordinated 

with 2 (as member Of 'Pred”), 2 with 3, 3 with 4, etc. Here the correlator is “Pred itself, 
and so actually coincides with onc of the Iwo relations being corrclaied. We have 
‘Corr PrecsPrethPred'y', and so *és3(PrechPred’y’. 

[Note. The symbol ‘/vm" appearing in Carnap-Bachmann (Extremalaxiome} docs not 
correspond to our ‘/sy" here, but designates the more complicated concept of 1-level 
jsomorphism, for this last concept we might perhaps usc the symbol, ‘"/sm', which has the 

advantage o! saving the subscript position for the place number } 

Exercises. 1. For each of the following two-place relations, decide whether it is one- 
many, many-One, or neither: a) Sister, b) Youngest Son; c) Identical; d) Having as 
Faiher, c) Mother; f) Grandfather, — 2. Let D be the relation which holds between any 
natural number v und the natural number 2x, Is D onc-many? Is D many-one” 
What are the first and second domains of D? What is the fick! of D?—- 3, Show each 
of the following by informal reasoning. a) */s2(RiyR2)> /s2(R2Ri)"s b) *f52(R1,R2)> 
JsfRayRv)> Us Ri,R3)'y ©) “ls RivRi)’ — 4. What properties of the relation /s2 do 
3(a), 3b), and 3(c) express” (See 16c.) 

Herewith ends our presentation of the simple symbolic language A. So 
far as they are formulated in this language A, the axiom systems and other 
illustrative applications given in Part Il can now be taken up (see the 
explanations in 42e). 



Chapter B 

The Language B 

In Chapter A we developed a simple symbolic language A. In Chapterc 
we chall construct an cxtended language C containing not only all the signs 
of A (except sentential variables), but many additional expressions as well, 

In the present chapter, B, we describe a symbolic language B and address 
ourselves to a number of methodological questions. In particular, we 
indicate by cxamples thc methods by which syntactical and semantica) 
systems can be constructed. We begin with a brief gencral elucidation of 
the character of such systems. Thercaftcr, as illustrations, we construct 

both a syntactical system (21-24) and a semantical system (25) for language 
B_ Lastly, the connections between the two systems are explaincd (26), 

Our language B is so chosen that all sentences of C, and therefore of A, 
can be translated into it. To avoid unduc complication in its rulcs, we 
omit from language B many modes of expression found in A and especially 
in C; however, the omitted expressions arc inesscntial and serve mercly as 

abbreviations. 
Chapter B is more abstract than our previous chapter, and by this token 

probably less understandable to the beginner, Furthermore, it is not 
absolutely necessary for an understanding of what follows, viz. construction 
of the extended language C (in Chapter C) and application of the symbolic 
logic (in Part I), Hence it is fcasible to omit Chapter B ona first reading of 
this book. 

20. SEMANTICAL AND SYNTACTICAL SYSTEMS 

In the investigation of languages, either historical natural ones or artificial 
ones, the language which is the object of study is called the object language. 
The object languages of this book are the three languages A, B and C 
comprising letters and artificial symbols. The language we use in spcaking 
about the object language is called the meralanguage. In this book, the 
English language, augmented by certain technical signs (including German 
letters), serves as a metalanguage. The rules for the object language in 
question—notably the syntactical and semantical rules—are formulated in 
the metalanguage, as are the theorems which follow from these rules. 

Every situation in which a language is employed involves three principal 
factors: (1) the speaker, an organism in a determinate condition within a 

8 
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determinate environment; (2) the linguistic expressions used, these being 
sounds or shapes (e.g. written characters) produced by the speaker (for 

instance, a sentence consisting of certain words of the French language); 

and (3) the objects, properties, states of affairs, or the like, which the speaker 
jntends to designate by thc expressions he produces—and which we term 
the designara of the expressions (thus e.g. the color red is the designatum of 

the French word ‘rouge’. The entire theory of an object language is called 
the semiotic of that language; this semiotic is formulated in the mcta- 
language. Within the semiotic of a language, three regions may be dis- 
tinguished according to which of the three aforementioned factors reccive 
attention. Thus, an investigation which refers explicitly to the spcaker of 

the language—no matter whether other factors are drawn in or not~ falls in 
the region of pragmatics. If the investigation ignores the speaker, but 

concentrates on the expressions of the language and their designata, then 
the investigation belongs to the province of semantics, Finally, an investiga- 
tion which makes no reference cither to the spcaker or to the designata of 
the expressions, but attcnds strictly to the expressions and their forms (the 
ways expressions arc constructed out of signs in determinate order), is said 
to be a formal or syntactical investigation and is counted as belonging to the 
province of (logical) syntax. 

A pragmatical description of, say, the French language tells how this or 
that language usage depends on the circumstances of the spcaker and his 
context, Certain modes of expression arc uscd in onc period but not 
another; Or they arc uscd when the speaker has certain feelings and images, 
and evoke from the hearer certain feelings and images; or they are used 
when the whole situation—comprising speaker, hearer, and environment— 
satisfies certain conditions, All this is disregarded by the semantics of the 
French language, which presents (in, say, the form of a dictionary) the 

relation between French words and compound expressions on thc onc hand 
and their designata on the other. Thus, whereas pragmatics includes 
consideration of historical, sociological and psychological relations within 
the language community where French is spoken, semantics confines itself 
simply to giving an interpretation of this language. Thc semantical descrip- 
tion of French contains all the specifications neccssary to understand this 
language and to use it correctly. The syntactical description of the French 
language, on the other hand, contains still less than the semantical: the 
syntactical description spccifies rules by which it can be decided whether or 
not a given sequence of words is a scntencc of the French language (without 
it being presupposed that the sentence is understood). Beyond this, as we 
shall sec, syntax may include rules which detcrmine certain logical relations 
between scntence, c.g. the relation of derivability. 
A natural language is given by historical fact, hence its description is 

based on empirical investigation. In contrast, an artificial language is 
given by the construction of a system of rules for it The rules for an object 
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language, as well as theorems based on these rules, are formulated in the 
metalanguage. A syntactical system for an object language L is a theory 
about L bascd on syntactical rules for L; and a semantical system for L is q 
theory about L based on semantical rules for L. A language for which 
syntactical rules are given is sometimes called a calculus; it is called ay 
interpreted calculus if, in addition thereto, semantical rules are given for it 
otherwise an uninterpreted (or formal) calculus. A language for which 
semantical rules are given (with or without syntactical rules) is sometimes 
called an interpreted language. 1n subsequcnt sections we give examples for 
both kinds of systems for the object language B. First we construct 
syntactical systcm for B by stating syntactical rules for B. Then semantica] 
rulcs for B will be given; these constitute the basis of a semantical system for B. 

21. RULES OF FORMATION FOR LANGUAGE B 

21a. The language B. In sections 21 through 24 we formulate syntactical 
rules for language B; and in section 25, semantical rules for B. 

The language B is sufficiently comprehensive that all the sentences of 
language C (a language that will be cxplained in the next chapter) can be 
translated into it. Since all the sentences of language A also appear in 
language C, the sentences of A are likewise all translatable into B. Language 
B contains each sort of variable found in C, but it docs not contain the 
sentential variables found in A (this sort of variable occurs in A only in open 
sentential formulas, and not in sentences). However, language B does omit 
most of those logical constants of A and C that serve mainly to make formul- 
ations more concise and do not contribute in an essential way to the scope 
of these languages, We omit these signs from B so that we can give simpler 
versions of the syntactical and scmantical rules for B. 

Language B contains as primitive signs the five connectives of 3, and the 
sign of identity for expressions of all types. [The two connectives ‘~’ and 
‘V’ alone would suffice, since in terms of these two the other three can be 
defined in accordance with T8-6g(6),j(1),f(1). Again, ‘=’ can be dispensed 
with, in view of D17-1 and the techniques of raising levels (16b). However, 
by taking all five connectives and the identity sign as primitive we can simplify 
our formulation of the primitive sentences and the rules of inference for B.} 
Also B contains universal quantifiers with variables of all kinds that occur; 
the existential quantifier is then definable in B, in accordance with T14-2a(4) 
and the technique of raising levels. And further, B contains the A-operator 
(sce 33). With the exception of this A-operator, B contains none of the other 
logical constants (chiefly predicates and functors of higher levels) which 
were introduced into language A in 17c-19 of the preceding chapter or will 
appear in language C; these other constants are reducible, by definitions or 
other rules of transformation laid down for them, to the constants now in- 
cluded in B. 
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The rules of formation for B governing the construction of expressions of 
various sorts, particularly sentences, are the same for both the syntactical 

system and the semantical system for B. Further, these rules agree with the 
explanations given in Chapters A and C—explanations that are often im- 
precise and mostly non-formal—of the way the different signs occur in 
sentences of language A and language C respectively. 

In the metalanguage, we use the following German letters (some of which 
have already been so employed) as designations for signs and expressions 
of the object languages A, B and C: ‘a’ for arbitrary signs; ‘v’ for variables; 
‘9 for arbitrary expressions; and ‘S" for sentential formulas. As designa- 

tions for a specified sign or a specified expression, we use the appropriate 
German letter with a numerical subscript. E.g. ‘a,’ might serve as a 
designation for ‘R’, ‘a,’ for ‘a’, ‘as’ for ‘ce’; in which case ‘a,(a,,03)’ would 
designate the sentence ‘R(a,c)’, A German letter with ‘i’ or ‘j’ or the like 
as subscript is uscd in speaking of cxpressions in general. Thus e.g. we 
write “If v; occurs in S;, then ...” for “If a certain (unspecificd) variable 
occurs in a certain (unspecified) scntential formula, then ...”. Note that 

are variables of the mctalanguage, and that ‘v,’, ‘S,’, ctc., are 
ding constants of the metalanguage. 

21b, The system of types. Each sign of language B belongs to one of the 
following kinds: 

, (b) two-place (*V", *.",*>",¢ 1. Connective signs: (a) one-place (* 
2. Special signs: ‘(’,')', *y . 

3, Sentential constants. 
4, Individual signs: (a) constants; (b) variables. 

5. Predicates: (a) constants; (b) variables. 

6. Functors: (a) constants; (b) variables. 

Signs of the sorts 4b, 5b and 6b are called variables (v), All other signs 
areconstants. Signs of the sorts 4, 5 and 6 are called signs of the 1ype system. 
From 2 we see there is only one kind of bracketing signs; in practice, how- 

ever, we employ both round and square as well as brackets of different sizes, 
with the understanding that these differences have no syntactical significance 
and serve only to facilitate reading. 

Each sign of B is cither taken as a primitive sign or elsc introduced by a 
definition. As primitice signs of language B we take the indicated separate 
signs of sorts | and 2, and all the variables. Further, we agree that any 
constant of sort 3, 4, 5, or 6 can at will be takcn as a primitive sign of B. 
We also agree that other constants of these sorts can be introduced at will by 
way of definitions; rules governing the form of such definitions will be 
stated later, 

Individual expressions, predicate expressions and functor expressions arc 
classified into levels (or orders), and then further into types, in accordance 
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with the following rules; hence expressions of these kinds are called expres. 
sions of the type system. 

1, Every individual expression is said to be of type 0. 
2. A compound n-place argument expression U;,, Uy...» U, (here n>2) 

with %,, of type 1), U), of type f),,..., W), Of type 1), i8 Said to be of type 

Lip Lives lige 
3 A predicate expression %, which can be completed by a one- or many. 

place argument expression U; of type 1; is said to be of type (1,). 
4 A function expression X, which can be completed by an argumen: 

expression %, of type 4, and which upon such completion becomes g 
full expression Y%,(2,) of type 1, is said to be of type (1):t,). 
If the type designation of an expression YX, contains at least one numeral 
‘0’ surrounded by 1 pairs of brackets and no ‘0’ surrounded by more 
than n such pairs, then &, is said to be an expression of the nth level, 

al 

The application of thesc rules can be clarified by some examples. 

Examples, By rule (1) the expressions ‘a’, ‘x’, ‘moon’ (recall 2c) ure of type 0; hence 
by rule (2) the argument expressions ‘Ac’ an are both of type 0,0, By rule (3) the 
predicaic expression ‘Spf’ is of type (0), and ‘Fa* is of type (0,0) The argument expres. 
sion ‘a,Sph’ of the sentence *M(a,Spi)' is of type 0,(0); hence by rule (3) M is of type 
(0,(0)) and by rule (5) belongs to the second level, whereas both ‘Spi’ and *Fa’ belong to 
the first level (in agreement with our previous no:i-formal explanation in 16). In view 
of DI7-3, we sec that “0°, *I', etc., are predicates of type ((0)) and of the second level, 
Contrariwise, the predicates *Tiany’ and “Sym'' introduced in 16c arc of type ((0,0)) because 
argument expressions that can complete them (c g. ‘Fa’) are of type (0,0). ‘The expression 
‘prod(a,b) used in 18a is an individual expression, hence is of type 0; its argument expres- 
sion ‘a,b" is of type 0,0; hence the functor ‘prod!’ is by rules (4) and (5) a functor of type 
(0,0° 0) and of level one The expression ‘mem(Fa)’ (cf 018-3) is a predicate expression 
of type (0), since the argument expression *x’ can complete it; thus, in view of the fact that 
Fa’ is of type (0,0), we see by rules (4) and (5) that the functor ‘mem’ is of type ((0,0) : (0)) 
and of the second level 

It follows from the rules above that a given predicate expression always 
takes argument expressions of one and the same type. Two predicate 
expressions %; and %,’ are of the same type if and only if (1) they have the 
same number of arguments, and (2) argument expressions in corresponding 
places are of the same type. [E.g. cach predicate may be a two-place 
predicate, so that their full sentences appear as %,(2),W,) and 9,'(91,',9,') 
respectively; then %; and WU,’ are of the same type provided 9%, and Y,’ are of 
the same type and similarly for %, and Y,’. The separate argument expres- 
sions Xl, and %, may be of the same type, or of different types; in the first 
case, both the predicate expression and the relation it designates are called 
homogeneous, in the second case inhomogeneous. The predicate ‘M' 
appearing in the examples just above is inhomogencous.] 

As will be fully explained in 33, A-cxpressions are either predicate. 
expressions or functor-expressions. A A-expression has the form (A%,)(%), 
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where 9%, is cither a variable or a sequence of n different variables separated 
by commas, (A%;) is called a A-operator, and U, its operand. Taking YU; to 
be of type /,, two cases arise: (1) %, is a sentential formula, in which case the 
expression is a predicate expression of type (¢;): and (2) ¥%, is an expression 
of type /;, in which case the A-cxpression is a functor expression of type (7; :1)) 

Fxercises. 1. Determine the 1ype and level of cach of the following expressions (cf. 
4e)' a) as "ar *, ¢) “mem (Par)", d) “x,b.x", ©) “Sin”; f) “Rell” (cf 16c), g) “ment, Fa". 
hh) (Un (cf. 19): i) Corea’ (cf. 19, example 2); j) ‘/s2" (cf. 19, example 2), k) *sue" (cf 18b) 

2ic. Russell’s antinomy. The distinction betwecn types was introduced 
by Bertrand Russcll in order to avoid the so-called logical antinomics. Onc 
such antinomy eg. is the Russell antinomy centcring on the concept of 
thosc properties which do not apply to themsclvcs. So Jong as no distinction 
js made betwecn predicates of different Ievcls, it will appear meaningful to 
say of a property F that either it applics to itsclf or it docs not. Thus we 
might make some such definition as thc following: a property is impredicable 
in casc it does not apply to itsclf, symbolically, ‘/mpr(F) = ~ F(F)’. 
Substituting for the frec variable ‘F’ of this definitional formula the defined 
predicate */mpr* itself, we obtain ‘/mpr(/mpr ~Impr(iinpry. But this 
sentence, like every scntence of the form ‘p = ~p’,is L-false. Our definition 
thus leads to a contradiction; this is the Russell antinomy. If, however, the 
distinction of types is introduccd, then the expression ‘F(F)' is not an 
admissiblc sentcntial formula because a predicate must always be of higher 
level than its argument expression. |e. the definition above cannot be set 
up, and the antinomy vanishes with it 

Concerning the aitinomies, sec* [P.M ] vol 1, 60{f.: Russell [Introduction] 135 ff ; 
Ramsey (/Oundations]: Fruenkel (Einleitung] §§ 13-15, with un account of the literatui 
Carnup [Syntax E] § 60a c On the system of Iypes, sec [PM] vol 1, 3917, 168 
Russell [Introduction] 131 ff, Ramsey [Foundations]. Russell originally undertook a 
further subdivision of the types, which led to the so-called ramified system of types: in 
connection with this ramified sysicm certain fresh difficulties arose, for whose elimination 
he required the so-called axiom of reducibility Ramsey showed ihat_ a further sub- 
division of types is unnecessary, und ihat the so-called simple sysiem of types (the one 
presented here) is sufficient, ihus the axiom of reducibilily becomes superfluous (cf. 
[PM.] vol 12, p xiv, Ramsey [Foundations] 275 ff.) 

Many-sorted languages. Sometimes it is useful to subdivide the class of 
zero-level expressions itself into sorts or types. The usual occasion for this 
is when there arc various kinds of individuals for which the same predicates 
are not uniformly meaningful. A language with n individual types is said 
to be n-sorted. Most of the usual symbolic languages are one-sortcd. 
A language with individual expressions which arc cithcr designations of 
objects (c.g. things, points, or the likc) or numerical cxpressions is a two- 
sorted language; an cxamplc of such is the language form cmployed in 46c 
for DI9 through D22. When, in a system of geomctry, it is desired to view 
lines and plancs as separate individuals and not as classes of points, a 
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useful procedure is to take points, lincs and plancs as different types of 
individuals, ic. to adopt a thrce-sorted language (as in 47) 

Languages with no type distinctions. \n a language of this kind, indj. 
viduals, classes of individuals, classes of classes of individuals, etc , can each 
occur as Values of thc same variablc —and thus also as elements of the same 
class (“‘inhomogencous classes”). Such languages have been constructed 
in analogy to axiom systems of set theory (cf Fracnkcl’s axioin system in 
43, and the references there to ccttain other axiom systcms such as those of 
von Neumann, Bernays, and Gédcl) Systems of logic with this form have 
becn developed and thoroughly investigated, cspecially by Quine ([Logisticy, 
{Types}, [Math. Logic]). A language with no type distinctions has among 
its advantages that of avoiding a multiplicity of arithmetics; this last wil] 
be mentioned later (sce 29b). On the other hand, a language of this king 
scems unnatural with regard to non-logical sentences For since in such g 
language a type-differentiation is also omitted for descriptive signs, formulas 
turn up that can claim admission into the language as meaningful sentences 
and that have verbal counterparts running as follows: “The number $ js 
blue”, “The relation of friendship weighs threc pounds”, “5%, of those 
prime numbers, whose father is the conccpt of temperature and whose 
mother is the number 5, die within a period of 3 ycars after their birth cither 
of typhoid or of the square root of a democratic state constitution”, As to 
the possibility of using transfinite levels to avoid the cited disadvantage in 
both language forms, cf. 29b. 

The sysicm of types can be exicnded by inchusiow of sentences, Supposc that sentential 
formulas arc assumed lo be of type s and Ievel 0, Conncetives arc then predicates of the 
first Ievel—u onc-place connective having lype (5), und a two-pluce one having type (s,s) 
Operator signs (of language C) also can be included: such a sign ay is saicl 10 be of the 1ype 
(yitestm) provided (9)%4)2) is of type fn. %y is a variable (or a sequence of variables 
separaicd by commas) of type 1. and % is of type Thus eg the “3° in “(axy(..)' is of 
type (0,38), the‘? (of 38) is of type (0,s,0); and the *A° in “Ley )(prad(s,3)" is of type 
(0,0,00,0:0)), 

21d. Sentential formulas and sentences in B. An expression of the 

language B is called a sentential formula (=) provided it has onc of the follow- 
ing six forms: 

(1) A sentential constant. 
(2) %,(%,), where YW) is of arbitrary type 1) and % is of type (1) (ise. a 

predicate expression). 
=, where &, and Y%, are expressions of the same type, 

), where S, is a sentential formula 
(5) (S)a,(S,), where S, and S, are sentential formulas and a, is one of 

the signs ‘V’, *.", ‘>’, and * 
(6) (%,)(S,), where S; is a sentential formula. 

Suppose v, occurs at some particular place in W. We say v, is hound al 
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this place in Y; provided %, (or a part of %; that includes the position in 
question) has the form (v,)(2,) or the form (A%,)(%,), where %; is either v; 
or a sequence of variables separated by commas and containing »,, and %, 
js a sentential formula or an expression of the type system. When this 
condition is not satisfied, we say v, is free in %; The expressions (v,;) and 
(A%,) used above are called operators, with S, and YW, respectively their 
operands. If at Icast onc of the variables in %; is frec, we say that %, is 
open: otherwise, we say YX; is closed A closed senicntial formula is called a 

sentence. 
Our rulcs of formation, established for expressions of the type system and 

for sentential formulas, envisage expressions writicn out fully with all the 
requisite parcnthes In practice, of course, we follow previous custom 
and omit parentheses in accordance with carlier rules [sec 3c and Ya]. 

2le. Definitions in B. A definition in B is a sentence of the form a,=S,, 
or a;=¥%,, where the clefinienchyn a, is the constant to be defined and the 
definiens (Z; or %, respectively) is a closed expression containing only 
primitive signs or signs which were previously defined. 

All definitions in the language B can be phrased in this simple way, with 
the definicndum consisting only of the new sign, because in B the A-operator 
can be employed. In other languages the usual practice is to admit open 
sentential formulas as definitions, the definiendum there containing variables 
as well as the new constants. [For definitions of this latter sort, it is re- 
quired that (a) each variable in the definiendum be free, and (b) occur not 
more than once; and that (c) no variable occur free in the definiens which 
does not also occur free in the definicndum (cf. [Syntax] §8)] It was in 
accord with this practicc that we introduced into language A c.g. the functor 
‘mem,'* we utilized in D18-1 the open definitional formula ‘meny(H )(x) = 
(y)Hxy". {n_contradistinction to this, language B allows us to write 
instead the definitional sentence ‘mem, = (AH)[(Ax)[(3¥)Hxr]]’; sce 33a, 
example 2. From this last definition there may be obtained (as we shall see 
in 33c) the sentence ‘(x)(//)[meni(H (x) = (3))//xy]’, whence it appears 
both forms of the definition lead to the e results Language C likewise 
permits the usc of the A-operator in definition. Usually, however, we will 
adhere to the open formula kind of definition because such definitions are 
more readily comprchended. 

22. RULES OF TRANSFORMATION FOR LANGUAGE B 

22a. Primitive sentence schemata. Thc rules of formation laid down in 
the preceding section arc taken to be part of both the syntactical system 
and the semantical system for language B_ Now let us turn to the rules of 
transformation which constitute the characteristic feature of the syntactical 
system for B. Thcy consist of rules specifying primitive sentcenccs and rules 
of inference. On this basis—the primitive sentences, together with the rulcs 
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of inference—additional sentences can be proved, and other sentences 
derived from any given sentences; this will be established in the next section 
Our choice of primitive sentences and rules of inference will turn out 9 
square with the interpretation we intend to make of language B. This 
interpretation was suggested in the carlicr non-formal cxplanations of 
language A (and will be appropriatcly extended in 33 to include the ). 
operator); it will be presented exactly and systematically in the semantical 
system Only after the intended interpretation has been so presented can 
the question of its agreement with the syntactical system be posed and 
answered adequatcly (26). Naturally, however, the rules of transformation 
themselves must not refer in any way to any interpretation, Since in fag, 

we wish here to regard these rules of transformation strictly as syntactical 
rulcs, we must take care to phrase them formally without any reference to 
the intendcd interpretation 

Each scntence of language B whose form is one of the list P} through 
P12 below is called a primitive sentence of B, The sign ‘()’ signifies a 
sequence of universal quantifiers, onc for each of the variables occurring 
free in the operand; if no variables occur frce in the operand, ‘( )' is under- 
stood to vanish. 

Connectives: 

Pl. ()[S;VE;> SF). 
P2. (IS, > SVS}. 
P3. (SVE, > SVS] 
PA. (M(S> S)) > (SVS; > SV S,)]- 

Universal quantifiers: 

PS. Specialization. ( )[(v;)(S;) > Sx), where S, is obtained from &, 
by substituting at cach free occurrence of v; in S; an expression 
YU, of the same type; YX, must contain no free variable which would 
become bound at onc of the substitution places in S;. 

P6. Distribution of the universal quantifier. 

Oleo(S;2S) > (AS, > Ca(S)]- 
PT. Vacuous universal quantifier. 

(O[S4> ((Sx)], where v; has no free occurrence in S,, 

Identity: 

PB. (v,)(v,)[(0;=0,) = (04)(24(0;) > ¥4(v;))], where v, is a one-place 
predicate variable, 

Extensionality (this will be explaincd in 29c): 

PI. (D,)(2)) [uy )(Me.)eee(Peg( PH (Meg Mgr Mg) Sin UA sh Pgh Meg) > 
»; = u,]; here cither (a) v; and v; are n-place predicate variables 
(n>1) and a,, is *=’, or (b) v, and b, are n-place functor variables 
and a,, is ‘=’. 
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d-operator (this will be explained in 33): 

PIO. ( [CA Peg9++15Peg( Ur) (Ory Pmgr-++2% mq) % (y)] s here the v,, (p=1, 
sy Mj n>) are n different variables of arbitrary types; the vp, 
arc n other different variables which do not occur in operators in 
Y,; for any p, ¥,, is of the same type as v,,; cither ; is a sentential 

formula and a, is ‘=", or U; is an expression of the type system 

and a, is ‘=’; and Y%, is obtained from &, by substituting Dy, for 

dg, (for cach p, p=1,...5 1)» 

Principle of choice: 

PIL. (0,)[(0)[0(0,) > ~ (0)(~P)(0/))] - (2))(P4) [016 04) « 04 (4) «> (D))~ 
(0,(0))-04(0))) > (n)(Bj(Pm) = Pe(Pm))] > ~ (0x) ~ (0))[04(0)> 
~ (Dm) (Dn)(Dj(Dn)+P4(D,) = (O,=Vq))]]; here v), D,, and v, have 
the same (arbitrary) type, say /,; 0, and v, are predicate variables 
of type (f,); and », is a predicate variable of type ((t,)). 

Number of individuals: 

P12. Sce the note that follows, and 37e. 

22b. Explanatory notes on the separate primitive sentences. It should be 
remarked at the outset that the list above comprises primitive sentence 
schemata, and nor single primitive sentences. Such schemata describe 
sentential forms with the help of the metalanguage, All the (infinitely many) 
sentences of the forms listed are primitive scntenccs of B_ Instcad of 
schemata PI to P4 we could, had we admitted sentcntial variables, set up 
four single sentential formulas (‘pVp > p’, etc.). On the other hand, 
schemata P5 to P11 arc necessary as they stand; they cannot be replaced by 
single formulas, because cach scheme refers to infinitely many types. 
Schemata P1 to P4, togethcr with the two rules of inference (sce the next 

section), describe the sentential calculus (or the propositional calculus) 
which is part of B. With the help of these primitive sentences and rules of 
inference, cvery tautology (rccall 5a) of language B can be proved: and 
further, for cach tautological open sentential formula S; of B (thus S, 
contains no scntential variables), the sentence ( )(S,) can be proved. 
Schema P5 is the primitive schema of specialization (or instantiation). 

From it we see that when the variable in question is an individual variable, 
there may be substituted for it either an individual constant or anothcr 

individual variable (cxamples are: ‘(x)(Px) > Pa’, ‘(y)[(x)(Px) > Py]’). If 
the variable is a predicate variable, the schema countenances simple 
substitution for it, but not formula-substitution (cf. 12c). In particular, for 
a predicate variable there may be substituted a closed or open predicate 
expression, e.g. a predicate, another predicate variable, or a A-prcdicate- 
expression. Instead of the carlier formula-substitution, what is permitted 
here is the simple substitution of a A-expression (see 33 below). Finally, if 
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the variable is a functor variable, there may be substituted for it a closeq 
or open functor expression, ¢.g. a functor, another functor variable, or g 
A-functor-expression. — Schema P6 corresponds to our earlier T14-1d(1) 
but refers to arbitrary types. — Schema P7 is seldom invoked; it allows 
e.g. the derivation of ‘(x)(Pa)’ from ‘Pa’. 

The following are cxamples of primitive sentences conforming to schema 
P8: 

Si: “x= (F)(Fx > Fy)’; 
N\(M(F) > N(G))]"; 
NYNY) > N(g))]’, 

where ‘/” and ‘g’ are functor variables. Since B contains the sign of identity 
as a primitive sign, ©, would appear in B in lieu of the definition of this sign 
respecting individual expressions of A (see D17-1a); similarly, S. would 
appear respecting first-level predicate expressions, and S; respecting first. 
level functor expressions. Analogous scntences hold for expressions of any 
other type. Spcaking generally, what P8 indicates is that any two individuals 
(or attributes or functions) of whatever type are identical provided each has 
all the properties that the other has. E.g. two physical bodies a and b are 
identical if they have all their properties in common, among these properties 
being their space-time relations to other bodies. 

The following is an example of a primitive sentence conforming to schema 
P11, the principle of choice (or selection). The sentence is formulated at 
the lowest Icvcl permitted by the principle; to facilitate rcading it, we write 
‘(gx)’ for ‘~(x)~". 

(N)[(F)IN(F) > (9x) Fx].(F(@)[N(F). NG). (9x) (Fx. Gx) > 
(x)(Fx=Gx)] > (GH)F)LMF) > GX()(FY. Hy = y=x)]]. 

In the terminology of classes, this sentence says: If N is such a second-level 
class that its element classcs are non-empty and mutually exclusive, then 
therc exists such a first-level class H that with each elcment class of N the 
class H has preciscly one individual in common. (This class H is sometimes 
called the ‘selection class of N”’.) Schema P11 allows similar sentcnces to 
be constructed for expressions of any other typc. The principle of choice 
was cnunciated first by Zermelo, Regarding the much-disputed questions 
about it, cf. [P.M.] 1 536 ff.; Russcll [Introduction] 117 f.; Fraenkel 
{Grundlagen] 80 ff., and [Einleitung] 288 ‘ff. together with full discussion 
and bibliography; Rosser (Logic] ch. xiv. 

Under the heading P 12 one primitive sentence is to be given—a sentence 
which specifics the number of individuals that constitute the domain of 
language B. If that domain is fixcd in advance, this primitive sentence 
depends on the domain; in any casc, of course, thc sentcnce speaks only of 
the structure of the domain and says nothing about its content. In connec- 
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tion with most axiom systems, what is useful is to establish that the corre- 
sponding domain is not finite, i.e. that the domain is at least denumerable— 

its cardinal number is at least No (axiom of infinity; cf. 37e). For some 
axiom systems, however—e.g. projective or metric (Euclidean or non- 
Euclidean) geometries in their usual form—a higher cardinal number, viz. 
that of the continuum, is required for the domain. Since it is desirable to 
ive at least one example of a primitive sentence bearing on the number of 

individuals, we do so below in terms of a domain having the cardinal 
number 2—since for this cardinal the corresponding primitive sentence can 
be quite simply formulated with the primitive signs of language B. This 
illustrative primitive sentence runs as follows: 

*~()[x=y V ~(2)(z=x V z=y))s 

in words: “There are exactly two individuals”. (In language A, this sentence 
is L-equivalent to ‘(3x)(ay)[x#y . (z)(z=x Vz=y)]’; of. 17c.) 

As mentioned earlier, we always make the presupposition (familiar in 
other systems of logic) that the domain of individuals is not empty. Thus 
eg. ‘(x)Fx > (ax)Fx’ is L-true in A (T14-Ic), hence so also are the sen- 
tential formulas ‘(3x)(Gx V ~Gx)’ and ‘(3x)(x=x)' (which come from the 
first by substitution for ‘Fx’ of ‘Gx V ~ Gx’ and ‘x=.x’ respectively); these last 
two formulas may be viewed as formulations of the word-scntence “There 
is at Icast one individual”. The corresponding sentences ‘(G)[~(x) ~ 
(GxV ~Gx)]’ and ‘~ (x) ~(x=x)' are provable in B, That an cxistential 
assumption is thus built into the logical foundation of our present system 
appears unobjcctionable (this ccrtainly, so far as we arc concerned with the 
practical application of our system in a scicntific theory or an axiom 
system), for it is hardly ever required to consider empty domains. Should 
it be desired to free the logical system from such existential assumptions, 
the rules must be altered in a certain way (cf. (Syntax E] § 38a). 

2c. Rules of inference. The rules of inference for B are two in number, 

as follows: 

RL. Modus ponens. From S, and S,>G,, &; is directly derivable. 
R2. Rule for connectives. GS; is dircetly derivable from S, provided S, is 

obtained from S, by replacing an expression W, in one placc by the 
expression Y%;, or conversely, where: 

a. WU, is S,55,,; U is ~S, VS, 

b. % is Spe Spi My is ~(~S, V ~G,,). 
c, Wis S,.=S,,3 U is (S,>S,)-(S,> S). 

Explanations of these rules. Rule RI conforms with the truth-table 
technique of language A: S, and S;>G, together L-imply &; (cf. T6-14a). 
Rule R2 refers the connectives ‘>’, ‘." and *=" back to the connectives ‘ ~’ 
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and * V’, again in accordance with the truth-tables for these signs in language 
A (cf. T8-6j(1), (6) and f(1)). If the connectives ‘>’, *.’ and ‘=’ were 
climinated from language B, rule R2 would be dropped. 

23. PROOFS AND DERIVATIONS IN LANGUAGE B 

23a. Proofs. In setting up a syntactical system for a language L, 
generally therc is in view a certain interpretation of L which motivates the 
selection of syntactical rules but is not explicitly mentioned in the rules, 
The primitive sentences of L are so chosen that thcy are true sentences jn 
the intended interpretation; and the rules of inference for L are so chosen 
that they lead invariably from true sentences to other truc sentences, Thus, 
all sentences of L which can be “proved”, i.c, can be obtaincd by means of 

the primitive scntenccs and the rules of inference, turn out true in the 
intended interpretation. Of course, the choice of primitive sentences and 
rules of inference can be made in different ways, even though the totality of 
provable sentences remains the same, What dictates a particular choice js, 
usually, some technical requirement, e.g. the requirement that proofs and 
derivations be simple. Primitive sentences are not required to havc any 
kind of preferred character of a logical or epistemological sort. 

By a proofin L we understand not a train of thoughts of a particular kind, 
but a sequence of scntences of L which in a certain sensc corresponds to such 
a train of thoughts, The correctness of a given step from the preceding 
sentences of such a sequence to some subscquent sentence thereof is not 
tested on the ground that it is a more or less plausible infercnce in the train 
of thought, but rathcr on the ground that it does or does not conform to the 
transformation rulcs for L. Primitive sentences can be utilized freely in a 
proof, and the same is true of any definition (so far as it conforms to the 
formation rules cstablished earlier for definitions)—since definitions are 
simply conventions regarding the use of new signs. The rules of inference 
for L specify conditions under which a sentence may be derived from one 
or more sentences. It is in this way that the rulcs of inferencc make possible 
a movement from primitive sentences or definitions to new sentenccs. Thus 
we arrive at the following definition: a proof in L is a (finitc) sequcnce of 
sentences of L, each of which is eithcr a primitive sentence or a definition, or 
clse is directly derivable from sentences preceding it in the sequence. The 
final sentence of a proof in L is said to be provable in L. If the negation of a 
sentence is provable in L, we say the sentence itsclf is refurable in L. A 
sentence which is cither provable or refutable in L we call decidable in L; 
otherwisc, undecidable in L. 

Example of a proof in language B. The successive scntenccs comprising 
the proof below are numbered consecutively in the right margin. In the 
left margin we enter notations that facilitate a final test of the proof by 
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jndicating the use of a primitive sentcnce, or a definition, or a rule of 
jnfcrence respecting ccrtain previous sentences. Strictly speaking, neither 
the entries in thc right margin nor those in the Icft are to be regarded as part 
of the proof. 

Pl AVAD>A qd) 
P4 (with ‘AVA? as = (AVA > A) > [~AV(AVA) > ~AVA] (2) 

S, as G;, and 
‘mA’ as S,) 

(1) (2) RI ~AV(AVA) > ~AVA (3) 
(3) R2a (A>(AVA)) > ~AVA (4) 
P2 AD>ANA (5) 

(5) (4) RI ~AVA (6) 
(6) Raa ADA (7) 
P3 ~AVAD>AV~A (8) 
(6) (8) RI AV~A (9) 

Inasmuch as we could at will break off the proof with step (6), or step (7), 
or step (9), cach of the sentences *~ AV A, ‘A> A’, and ‘AV ~ A’ is provable 

in B. 

Exercises, Give a proof in B for cach of the following sentences on the basis of the 
suggestion: 

a) (B>C) > [(A>R) > (A>C)] 
Use an appropriate sentence of the form P4, und then apply R2 

b) AD~~A 
The proof should be modeled on thut of the example, however, lines (1) and (2) 
should be appropriately modified so that ‘~A” replaces “A* throughout. R2 
should then be used on the resulting line (9). 

¢) ~(A.~A) 
Applying R2 to ‘A > ~~ A* (which has been shown to be provable), obtain '~ AV 
~~A* Now by modcling a proof on that of ‘4 > ~~ 4", a proof can be obtained 
for (~AV ~~A) > ~~(~AV ~~A)'. Applications of RI and R2 then yield 
the desired result, 

d) A > (B>A) 
Use P3 with ‘A’ as &j and ‘~ 8’ as Gy Then use P2 with ‘A’ us 2; and ‘~ 8" as &} 
and, by applying R2 to this result, obtain ‘~ A V (AV~ A): Using an appropriate 
sentence of the form P4, the two results can be used with RI twice to obtain '~A V 
(~BV AY, The desired sentence now results from two uses of R2 

©) (A2 RB) > (~B> ~A) 
From ‘B > ~~ B" (which is obtainable as in (b)) and an appropriate sentence of the 
form P4, ‘~ AVR > ~AV~~ 8" can be obtained. Next sccure ‘~AVB > ~~B 
~A’ with the help of P3 und a provable sentence of the form of exercise (a). Now 
apply R2 

f)~~A>DA 

First obtain ‘~A > ~~~A' and ‘AV~A’, then a suitable sentence of the form 
P4 will vicld “A V~~~A', Then use P3, and R2. 
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8) A.B>A 
‘Through the use of P2 and a sentence of the form of exercise (c), ‘A.B > ~~A" can 
be obtained 

h) (x)(Px) > (PxV x) 
Use P6 with "Px" as G), "PxV Qx' as Gy, and “x” as vi. RI can then be applied to 
this result and the result of an appropriate instance of P2 to yield the dese 
sentence. 

i) (A> Px) > (A > (x) Px) 
Here it is supposed that ‘x" does not occur in A". Use P6 and P7, 

J) (Px? Qx) > (~PxV Ox) 

23b. Derivations. Use of the primitive scntences, the definitions, ang 
the rulcs of inference is not restricted to proofs, i.e. to showing that certain 
sentences are provable—and hence true in the intended interprctation, 
It is also Icgitimate to cmploy these rules of transformation, when what 
is wanted is a derivation of certain sentences from certain other sentences 
(generally not provable). The sentences from which the derivation pro. 
eceds are called the premisses of the derivation. We define: in a language 
L, a derivation with given premises is a (finite) sequence of sentences 
of L, each of which is either a premiss, a primitive sentence, or a dcfinition, 
or else is directly derivable from sentences preceding it in the Sequence, 
If G, is the last sentence of a derivation in L with premisses &, ..., S, 

we say G,, is derivable in L from G, ..., Sy. 
Examples of derivations. Below are four derivations in B, Entries in 

the two margins have the same role as in the case of proofs, and similarly 
are not part of the derivation, 

1. Premiss: AVB (1) 
P3 AVB> BVA (2) 
(1) (2) RI BVA (3) 

Thus ‘BV A’ is derivable from ‘AV B’. In general, SVG; is derivable from 
SVS, 

2. Premisses: Le (1) 
2. ~A (2) 

P2 ~A>~AVB (3) 
(2) (3) RI ~AVB (4) 
(4) R2a A>B (5) 
(1) (5) RI B (6) 

Thus an arbitrary sentence ‘B’ is derivable from ‘A’ and ‘~ A’, Generally: 
from G, and ~G, any sentence is derivable. 

3, Premiss: (x)Px (1) 
PS (Px > Pa (Q) 
(1) (2) RI Pa 3) 
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qhus ‘Pa’ is derivable from (x)Px’. This operation is called specialization 
of instantiation, 

4, Premiss: (x)Px (dd) 
P7 (x)Px > (y)(x)Px (2) 
(1) (2) RI (W(X) Px, (3) 
PS (»)[(x)(Px) > Py] (4) 
P6 (MGMPx) > Py] > [)x)Px > (») Py] (5) 
(4) (5) RI ()(x)Px > (y)Py (6) 
(3) (6) RI (y)Py (o) 

Thus ‘()Py’ is derivable from ‘(x)Px’. Earlicr, we called this operation the 
revision of a bound variable (see T12-2a). 

Exercises. 1, Show that *B.A’ is derivable in B from *A.8" First prove ‘{(~AV 
~B) > (~ BV~A)] > [~(~BV~A) > ~(~AV~B)]', modeling your proof on that 
given in exercise Ic, 23a Then usc P3 and R2.— 2. Show that *~ A" is derivable in 
Bfrom ‘A>B" and *~ 8", (See exercise (e), 23a.) — 3. Show that *B" is derivable in B 
from ‘~ A’ und *AVB'. First prove “AVB > ~~AVB',.— 4, Show that “BV D' is 
derivable in B from *A>B’, ‘C>D', and ‘AVC". First derive “AV D’, and use P3. 
Then derive ‘DV B" and use P3 again, — 5. Show that “(x)Qx° is derivable in B from 
“(Px > Qx)" and ‘GPx’ Use P6 —6, Show that ‘~ Pa’ is derivable in B from 
vyy(Px > Ox)" and ‘~ Qa’, Use PS Show that *(x)(Px > Qa)’ is derivable in B 
from “(x)~Px". Use P2 — 8 Show that *(z)Rzz’ is derivable in B from “(x)(y)Rxy". 
Use PS twice. — 9, Show that ‘(x)(QxV Pa)’ is derivable in B from ‘(x)Px’. Use PS. 

24. THEOREMS ON PROVABILITY AND DERIVABILITY IN 
LANGUAGE B 

24a. General theorems for B. 
724-1. If S, is derivable from provable sentences, then G; itself is also 

provable. 
124-2, From S, and ~&; any sentence whatever is derivable. (Recall 

example 2, 23b.) 
124-3. If ~S; is provable, then any sentence whatever is derivable from 

=). (By T2.) 
124-4. If S;>S; is provable, then G; is derivable from G;. 
7245. If S, =; is provable, then each of S, and G, is derivable from the 

other. 
124-6. a. Every tautology (recall 5a) is provable. 

b. If, on the basis of truth-tables, a sentence is L-implied by one or 
more other sentences, then the sentence is derivable from these 
other sentences. 

Téa says that for any tautology in B there is a proof in B, But this 
theorem does not tell us how to construct a proof for an arbitrary given 
tautology. There is a method for doing this, which, however, cannot be 
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described here. (The method makcs use of the so-called conjunctive norma} 
form; cf. Hilbert [Logic].) 

More generally, the following is the case; all theorems regarding language 
A (sce especially 8, 13, 14 and 15a) Aave valid counterparts for language B, 
This means: 1. All sentences of language A that have been identified ag 
L-true are provable in B (insofar as they are sentences of B, otherwise their 
translations into B); 2. If itis known that a certain sentence of A is L-implieg 
by certain other scntenccs of A, then in B that sentence is derivable from 
the others. In this connection, special emphasis is to bc given thc theorem 
on raising levels (T16-1). 

24b. Interchangeability. As was the case for language A (recall T15-3), 
so here in language B equivalent formulas are mutually interchangeable ing 
sentential formula. Additionally, in B the same interchange of equivalent 
formulas can take place in expressions of the type system which contain 
sentential formulas, e.g. a A-predicate expression of the form (Av, )(S;), 
And further, in B expressions of the type system that are linked by an 
identity sign are mutually interchangeable in a sentential formula (this 
connects with our earlier definition D17-1 of the identity of individuals, 
and with the theorcm on raising levels), as well as in a larger expression of 
the type system. Thcorem T7 below refers to all four cases. 

124-7. Suppose that %,, %, U,’, and UW,’ are expressions of language B, 
that a, and a,’ are signs of B, and that these expressions and signs 
satisfy the following thrce conditions. (1) Either: (a) 4, and yf, 
are sentential formulas and a, is jor: (b) U, and WY; are expres- 
sions of the same type and a, is (Hence, in cither case %,a,%, 
is a sentential formula.) (2) The same condition holds for %,', 
YG and a,’ (a,’ is not necessarily the same sign as a,). (3) U/' is 
obtained from YW,’ by replacing in &,’ an occurrence of Y, by %, 
(without regard to other possible occurrences of Y; in %;'). Then 
the following hold in B: 

a. ()(2,0,%)) > ()(2%)'0,'2)’) is provable. 
b. ( )(%)'a,’%,') is derivable from ( )(%,a,%,). 
c. If ()(%,a,%;) is provable, then so is ( )(%;’a,"%,’). 

Illustrative applications of this theorem appear in the four cxamples below, 

Examples. The following cxamples are phrased under the supposition that in B 
definitions have been introduced for ‘3°, *mem,", ‘*mem;’, ‘/s;" and ‘srr;* in analogy with 
D17-3, D18-1 and 2, D19-5 and D34-2. 

1. Inverchanging a sentenstal fornula in a sememial formula. 
a, Given ‘A= B" as a premiss ‘A’ can be interchanged with °A’ in c.g. °C. ~ A’; the 

result is ‘C.~B'. In other words, ‘C.~A=C.~ B’ is derivable from ‘A=, 
hence °C. ~ B° is derivable from “A «~ A’ together. 

b, (Recall example | in connection with T1S-3.) From *(x)(Rxa = Sbx)' the formula 
“~(x)(PxV Rxa) = ~(x)(PxV Sbxy’ is derivable. 
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2. interchanging a senemial formula in an expression of the type system. 
a. Given, as in example Ib above, *(x)(Rxa = Sha)’, the formula “(Ax)(PxV Rxa)= 

(Qy)(PxV Sha)’ is derivable 
b. (Recall example 2 for TIS-3,) The formula “(x)(r)[(Px > Rxy) = (~ Ray > ~ 

Px)|' is provable Hence, by T7c, the sentence ‘(Av)[(x)(Px > Rxy) V Qy] = 
(Ay)[r)(~ Rey > ~ Px) V Qy]’ is also provable, 

3, Inerchanginy an expression of rhe Lype system in a semenvial formula 
a, *~(x)Rxa = ~(a)Rxh’ is derivable from ‘a= bh", 
b. Assume (xMQx = Pix.~P2x)’ is given Notice that ‘(x)[(Ay(Pir. 

~Pry)x = Pix.~P2x]' is a primitive sentence conforming to schema P10, Then 
ol Oy = (y(Piur.~ Pasa} is derivable from &4, and from this in turn (with 
the help of P9a) may be derived the sentence 22 “Q=(Av(Piy.~ Pay)", [If*Ps" 
und “P2’ are primitive signs of language A, then either 2, or its operand may be 
laid down in A as the definition of °Q". The corresponding definition in B 
would be 2] Hence *Q’ may be interchanged unywhere with the A-cxpression; 
e.g, °3(Q) = 3(AyPiy.~ P23)’ is derivable from 2 

ec. Let 21. “(x)[mema(R)x = mem,(S)x]’ be given, Then by P9a the sentence 
“memR)=mem\(SY is derivable from 2, Hence */sy(Pymei(R)) = 154 
(P,nem,(S))' is also derivable from 2, 

4. Interchanging an expression of the type sysiem in another such expression, 
a. “(x)(Rva) = (Ax)(Rxb)’ is derivable from ‘a=6". 
b, Recalling example 3c above, let “mem2(R) = mein,(S)' be assumed From it can 

be derived ‘sirs(mems(R)) = siri(memy(S))", which says “The cardinal number 
of the second domain of R is the same as that of the first domain of S.”" 

From T7 we also sce the possibility of manipulating definitions in the 
customary way, viz. the introduction into any context—or thc elimination 
cone the defincd signs; for in B a definition has one of the forms 
=, or a,=W,, where a, is the sign being defined (cf. 21e). 

sade Use T7 (among others) for the following 1. Show that ‘Ph’ is derivable 
in B from ‘Pa’ and ‘a=6". Use P8. 2, Show that ‘B* is derivable in B from ‘B 
~ BVA’, Use P2, T7, P4, Pl. —3. Show that *~ Qa’ is derivable in B from ‘~Ph* 

and “W)(Pr = QaV Ry’. 

25. THE SEMANTICAL SYSTEM FOR LANGUAGE B 

25a. Value-assignments and evaluations. Now Ict us establish the rules 
of the semantical system for language B, rulcs which systematize the intended 
interpretation of B. 
To begin with, the scmantical system B contains the same rules of forma- 

tion as the syntactical system B (21); hence we do not repcat them herc. 
What we understand is that the interpreted language B as described in the 
semantical system contains the same signs, expressions of the type system, 
sentential formulas, sentences, and definitions, as the uninterpreted language 
B described in the syntactical system. 
The mcaning of individual constants of a language L will depend on the 

domain of things to which L is applied. These things may be space-time 
points, events extended in space-time, physical bodies, persons (of any 
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historic epoch), persons now alive, ctc. Later (in Part Il) we shall give 
examples of various domains of individuals. In the present chapter we 
leave the choice of domain open, and phrase the semantical rulcs for B in 
terms of “individuals” without specifying what thcy arc. 
Of the primitive signs of B we count as descriptive the sentential constants 

and the constants (individual constants, predicates, and functors) belonging 
to the type system. All other primitive signs arc /ogical. A defined sign is 
descriptive if a descriptive sign occurs in its definicns, otherwisc logical, 
{Strictly speaking, this division of the primitive signs into descriptive and 
logical depends on the kind of domain of individuals chosen. E.g. the 
division we have made above holds if the domain of individuals is taken to 
"be all space-time points, or all space-time regions, or all processes of the 

physical world. Other choiccs of the domain may, under certain circum. 
stances, compel a modification of this division; e.g. if the domain of 
individuals is taken to be all numbers, and thc undcfined predicates and 
functors are interpreted as arithmetical concepts, then all the primitive 
signs are logical. Concerning this problem of division, which is still not yet 
fully clarificd, cf. [Semantics] § 13, [Meaning] § 21.] 

Value-assignments. The rules below agree with those given earlier (11) 
for language A, but have received a broader formulation suitable to B, 
Like A, our language B is extensional. Hence herc, too, it is sufficient to 
take for the assigned values extensions of appropriate types. This is what 
the following rulcs do, 

Rules governing valuc-assignment 

1, Possible valucs for sentential formulas arc the two truth-values: 
Truth (T) and Falsity (F). 

2. Possible values for an cxpression of type 1; of the type system are the 
valucs of type f, hercinafter specified: 

a. A value of type 0 (i.c. a possible valuc for an individual expression) is 
any individual of the chosen domain. 

b. A valuc of type fiyf)y.sf), with n>Z (i.e. a possible value for an 

n-place argument expression) is any n-tuple of values whosc pth entry 
(p=],....n) is a valuc of type lig 

c. A value of type (/,) (i.e. a possible value for a predicate expression) is 
any class of valucs of type 1;. 

d. A valuc of type (/,:1,) (i.e. a possibl¢ value for a functor expression) 
is any function-cxtension by which with each possible valuc of type ft, 
(as argument of the function) therc is coordinated cxactly one value 
of type t, (as value of the function). 

Explanation of “function-extension Suppose fi and fy are functions of the same type 
(itn). We say that fi has the same function-cxtension as fg whenever f; has for cach 
argument the same function-valuc as fz. If this condition is satisfied only as a matter of 
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contingent fact but not logically, the function-extension fi is still the same as the function- 
extension f while the function fi is nor the same as the function fp In this case, fy and f 
count for a valuc-assignment as the same value of type (?1 : #2). 

As value-bearing signs in an expression Y, of system B we count all 
descriptive signs and all variables occurring free in %;. A value-assignment 
for MU, consists in associating with each value-bearing sign of %, one of the 
possible values of that sign (the associated valuc having, of course, the same 
type as the sign). Given a determinate valuc-assignment 8, for the value- 
bearing signs of %,, the evaluation of U, at B,, i.c. the establishment of the 
value of %; relative to B,, is made in accordance with the following rules. 
These rulcs permit the cvaluation of any component cxpression—be it a 
sentential formula or an expression of the type system—so that, by beginning 
with the smallest components and proceeding step-wise through successively 
latger ones, we can arrive finally at the valuc of expression 4%; itself. In the 

following Rules | and 2 we write simply “‘valuc”’ for “valuc at 8B;”. 

Rules governing evaluation: 

1. Of expressions of the type system. 

a. A compound argument expression %,,,%,,....%), with n=2 has as its 

valuc the n-tuple comprising successively the valucs of 9%,,, of Y%),, ... 
and of 9%;,. 

b. A predicate expression of the form (Av,)(S,) has as its value the class 
of thosc values of v, which satisfy S, (i.e. those values of », which, 
together with the valucs assigned by %,, give formula S, the valuc 7). 

c. A predicate expression of the form (Av,,,0j,5...5;,)(S;) with n=2 has 
as its value the class of those n-tuples of valucs of 0j,,0;,...,;, that 

satisfy S). 
d. A functor expression of the form (Av,)(%;) has as its valuc that function- 

extension by which with cach possible value of », there is coordinated 
that valuc taken on by YW, at this assignment to v,. 

e, A functor expression of the form (Av,,,0),,-..,2;,)(%) with 12 has as 

its value that function-cxtension by which with each n-tuple of 
Possible values of v,,,0;,,...,0), there is coordinated that valuc taken on 

by YW, at this assignment to the variables named. 
A full expression 9%,(9;) of the functor cxpression ¥%, has that value 
which the function-cxtension which is the value of %, coordinates with 
the value of %). 

rm 

2. Of sentential formulas. 

a, A sentential formula of the form %,(%,), comprising the predicate 
expression %, (of arbitrary type) and the (simple or compound) 
argument expression U,, has the value T provided the value of %, 
belongs to the class which is the value of %,; otherwise, the value F. 
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b. A sentential formula of the form %,=Y%, has the value T provided Yy 
has the samc value as %;; otherwise, the value F. 

c. ~G&; has the value T provided G, has the value F; otherwise, the 
value F. 

d, SVS, has the value T provided at least one of G, and G, has the 
value T, otherwise, the value F. 

G,.S; has the value T provided both G; and G, have the value T, 
otherwise, the value F. 

f. S,> GS, has the value F provided S; has the valuc T and G; the value 
F; otherwise, the valuc T. 

g. S/=G, has the valuc T provided G, and G, have the same value; 
otherwise, the value F. 

h. (0,)(S;) has the value T provided S, has the value T at every possible 
valuc-assignment to the free variable v; in S, (together with the given 
valuc-assignment %, to the other valuc-bearing signs); othcrwise, the 
value F, 

In agreement with earlier practice, we say: the value-assignment %; (or the 
valucs assigned by %&,) satisfies the formula S, provided S, has the value 
T at Y;. The concept of range and the L- and F-conceprs are then defined 
for language B in the same way thcy were carlier defined for language A 
(cf. Sb and 6a); we shall not repeat these definitions here. 

25b. Rules of designation. Whercas L-concepts arc among the most 
important concepts of logic and so occur frequently in the theorems of this 
book, the concept of rush has less importance within logic: it appears here 
mostly in conditional contexts such as “if S, is true, then S, is true”, 
However, the concept of truth has quite an important role in cpistemology 
and the methodology of science. As a basis for our subsequent definition 
of truth we lay down rules governing variables and descriptive constants. 
The first step here is to specify the value domains of variables of all types; 
this we do by means of the following two rules. These rules arc phrascd on 
the assumption that the domain of individuals of language B is the domain 
of physical things. 

Rules governing the values of variables: 

1. The valucs of individual variables are physical things, 
2. The values of predicate variables and functor variables of arbitrary 

type are all possible values of thc type in question drawn from the specified 
domain of individuals (cf. Rule 1) in conformity with our carlicr rules (those 
of 2c, d) governing value-assignments. 

[The formulation of these rules is in terms of valuc-extensions (10b), and 
makes no reference to valuc-intcnsions; however, thesc extensions furnish 
an adcquatc basis for our definition of truth.] 
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Next we turn to the rules of designation governing the descriptive primitive 
signs of the system Suppose that, for a certain application, language B 
contains only the following descriptive primitive signs: three individual 
constants ‘a’, ‘hb’, ‘c’, two one-place predicates ‘P’ and ‘Q’ of the first level; 
and, finally, a single two-place predicate *R’ of the first level. By way of 

jllustration, let us now lay down rules of designation which correlate with 

these signs and designata listed in the second column of the table below. 

‘These designata arc intensions (concepts), not extensions (cf. 10b); by means 

of thesc intensions the corresponding extcnsions (given in the third column) 
are determincd, 

Rules of designation: 

Primitive , Designatum (Intension) Extension 
sign | 

p * (the individual concept) moon | (the thing) moon 
‘pb’ | (the individual concept) sun (the thing) sun 
‘ce | (the individual concept) Africa. (the thing) Africa 

the property of being spherical | the class of spherical things 
‘Q° the property of being bluc the class of blue things 
“R the relation greater than | the class of pairs x,y-such that 

a is greater than y 

This choicc of designata conforms with our previous agreement regarding 
the domain of values of variables. From the designata of the primitive signs 
there result in an obvious way thc designata of closed expressions, viz, on 
one hand certain conccpts (propertics, relations, ctc.) as designata of 
expressions of the type system, on the other certain propositions as designata 
of sentences. (Rulcs governing the determination of these derived designata 
are omitted; such rulcs are not necessary for the definition of truth.) 
Similarly there results for each defined constant its designatum, viz the 
designatum of its definiens. 

25c. Truth. Rules (1) and (2) above fix the possible valucs for each 
kind of variable in language B. Now we fix a special valuc-assignment 8 
to all the descriptive primitive signs of language B: to cach of these signs, 
B, assigns as its valuc the extension of that sign specified by the rules of 
designation above. Further, we say: the extension of a closed expression 
; of language B is the valuc Y%, takes on at the value-assignment ©, (the 
evaluation being accomplished in accordance with our previous rules 
governing cvaluation, 25a). 

Example, In view of evaluation rules 2a, 2c and 1b, the value of *(Ax\Px.Qx)" at Bt 
is the class of all thosc things which are both spherical and hlue, ihus, this class is the 
extension of thc expression “(xX Px. Qv)"- 
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At this point we can define the concept of truth: a sentence &; is true in 
language B provided its extension is the valuc T. l.c. a sentence is true 
provided its cvaluation (according to the rules of evaluation) at B, (fixed 
the rules of designation) produce the valuc T. [This definition of ‘true’ in 
terms of ‘T’ docs not involve us in a vicious circle; for ‘T’ and ‘F" are here 
to be construed simply as technical terms whose usc is governed by the 
rulcs of cvaluation—'l’ and ‘0’, or any other pair of neutral terms, coulq 
just as well have been used in place of ‘T’ and ‘I”.] 

The following theorem states truth conditions for sentences of the simplest 
form; these conditions are general, i.c. they make no referencc to particular 

rules of designation. The theorem is an immediate conscqucnce of rules 

2a,b governing evaluation and the definition of the value-assignment &,, 

125-1. a. A one-placc atomic sentence a,(a,) is truc if and only if the 
individual which is the extension of a; belongs to the class which 
is the extension of a, i.e, if the individual designated by a; has 
the property designated by a). 

b. An a-place atomic sentence a,(a,,,0),5..,0),) with n>2 is true if 
and only if the -tuple comprising those individuals which are 
successively the extensions of a,,, of a), .., and of a), belongs 

to the class which is the extension of ic. if the rclation 
designated by a; holds between the n individuals designated by 
a), by a), ., and by a,, respectively. 

c. An identity sentence a;=a; involving the individual constants 
a, and aq; is true if and only if each of these two constants has 
the same individual as its extension. 

Suppose we wish to decide by means of our definition of truth whether a 
given sentence S; of language B is true or false. Evidently we are required 
to go back to the specific value-assignment &,, i.e. in effect to the rules of 
designation, as well as to the rulcs of cvaluation. Even this does not suffice, 
however, if S; is a factual sentence—which is to say, neither L-true nor 
L-false. Here we must also bring to bear factual knowledge about the 
individuals of the domain in question. E.g. should &, be the atomic 
sentence ‘Pa’, then Tla indicates that S, is true if and only if the moon is 
spherical. No more than this can be extracted from the semantical rules. 
What these rulcs have furnished here—and the samc situation will obtain 
for any other factual sentence—is simply a sruth-condition, i.e. a necessary 
and sufficient condition for the truth of the sentcnec. A final decision as to 
the truth or falsity of the factual sentence in question (whether the truth- 
condition given by the semantical rules is in fact satisfied or not) lies 
outside the province of semantics; it lies in the province of cmpirical 
science (more particularly herc in astronomy). 
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26. RELATIONS BETWEEN SYNTACTICAL AND 
SEMANTICAL SYSTEMS 

26a. Interpretation of a language. We have constructed two systems for 
language B—first a syntactical system, then a scmantical system. The 
semantical system furnishes an interpretation of language B, since it contains 

rules which yield for each sentence =, of Ba truth-condition p, such that S, 

jstrue if and only if p;. Once this truth-condition p, is obtaincd, we “‘under- 

stand” S,, we know what it “says” about the individuals of the domain in 
question, what its ‘‘meaning” , &; says the individuals 
are of such a nature that the truth-condition is satisfied. The mcaning of 
the sentence S; or, in technical terms (sce 20), its designatum is the proposi- 

tion p;. What we found to be the case respecting the illustrative system of 
the previous section, viz. the sentence ‘Pa’ is truc if and only if the moon is 
spherical, appcars in these earlicr terms as: the sentence ‘Pa’ designates the 

proposition that the moon is spherical 
One who constructs a syntactical system usually has in mind from the 

outset some interpretation of this system (This interpretation need not 

itself have a prior representation as a semantical system; and indecd, what 
prior representation it may have is normally non-systematic ) While this 
intended interpretation can reccive no explicit indication in the syntactical 
rules—since these rules must be strictly formal—the author's intention 
respecting interpretation naturally affects his choice of the formation and 
transformation rulcs of the syntactical system. E.g. he chooses primitive 
signs in Such a way that certain conccpts (perhaps those of some given 
unsystematized theory) can be expressed. He chooses scntential formulas 
in such a way that their counterparts in the intended interpretation can 
appear as meaningful declarative scntences His choice of primitivesentcnces 
must meet the requirement that these primitive sentences come out as true 
sentenccs in the interpretation. And his rules of inference must be such that 
if by one of these rules the sentence &, is directly derivable from a sentence 
, (or from S;, and S),, where S, is S,,.S;,), then S,>S; turns out to be 

a true sentence under the customary interpretation of ‘>’. These last 
requirements ensurc that all provable sentences also come out true. 

If in particular the purpose in constructing a syntactical system is to 
represent formally a part of logic, not a part of empirical scicnce, then the 
transformation rules must be so choscn that cach primitive sentence is 
logically true and , logically implies S; whencver &; is directly derivable 
from S,. A language for which rules of this kind arc given is often called a 
“logical calculus”; e.g. in view of our syntactical rules, language B is a 
logical calculus of this sort. 
Now the interprctation we intend for our language B has been presented 

systematically in the semantical system. Our syntactical system is so 
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constructed that it mirrors formally ccrtain logical relations holding pe. 
twecn the sentences of B, but no factual knowledge expressible in B. _Indge, 
the following can be cstablished’ cach primitive sentence of B is L-true in 
virtuc of the scmantical rules (admittcdly, this is still controversial insofg, 
as it concerns primitive scntcnces P!2 about the number of individuals). 
and if by a rule of inference of B the sentence S, is directly derivable from 
Sj, then the sentence S, L-implies S,. From this in turn it follows that 
every provable sentence is also L-truc, and that if S; is derivable from, 
then &; L-implics S;. jj 

However, the converse does not hold: not all L-true scntcnces of B are 
provable In fact, it is impossible to construct a syntactical system of the 
usual kind-- one with a finite number of primitive sentences or primitive 
sentential schemes, and with a finite number of rules of inference each of 
which applics only to finitely many premisses—whose provable sentences 
arc all and only the L-truc sentences of B. The general result here is that 
no syntactical system of the usual kind can encompass the arithmetic of 
natural numbers (with variables for natural numbers, and recursive defini. 

tions of arithmetical functions). However, the converse referred to above 
docs hold under certain limitations: if an L-truc sentence of B consists only 
of primitive signs and contains no variables cxccpt possibly individual 
variables, then this sentence is also provable on the basis of our rules of 
transformation. 

For more detailed considcration of the relations between syntactical and scmantical 
systems sce [Scmantics] and [Formalization] The results of thc last paragraph above 
are due to Kin Gddel, sce Hilbert und Bernays [Grundlagen] vol 1, and Klecne (Meta- 
mathematics]. 

26b. On the possibility of u formulization of syntax and semantics. In this chapter we 
have discusscd syntactical systems und scmanticul systems in general, and especially such 
systems for language B Our explanations were phrased in a non-formalized meta- 
language, viz English supplemented by some technical symbols However, it is possible 
to formalize both syntax and semantics, and this is sometimes desirable for greater 
precision, We shall now illustrate this possibility by giving some basic definitions and 
axioms. Since the present topic gocs beyond the boundaries of an introductory book, 
we shall restrict the exposition to some bricf indications without detailed explanations, 
Tor the purpose of this formalization it would also be possible and useful to employ a 
symbolic metalanguage, for the sake of simplicity, however, we shall proceed as before 
and give our formulations in ordinary English except for a few technical symbols, The 
reader may omit this subsection 26b since no reference will be made to it later. 

The main purpose of the exposition which follows is to show a way of defining more 
exactly such concepts as /anguage, calculus, inte; prereil language, and inte: preted calculus 
Earlier in this text we referred informally to the class « of the signs of a language L and 
the class < of the sentences of L, but we did not say what 4 language is. Now ina 
formalized system we may define the /anguage L as the ordered pair (s, The class a 
of the expressions of L is defined as the class of all finite sequences whose members are 
elements of the class «, (An »place sequence can be defined as 4 many-one relation 
between the » first natural numbers and the members of the sequence.) Then a syn- 
tactical axiom is adopted to the following effect: For any class a and any class &, if (2,2) 
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js a language, then every clement of = is a finite sequence of elements of a, and every 
flement of « occurs as a member of some element of 2. 
A calculus, i ¢., a language with syntactical rules of deduction, can then be defined as 

an ordered triple (0,2, Dd), where Dd is the relation of direct derivability. This relation 
is here understood in a comprehensive sense such that the primitive sentences of the 
falculus are taken as directly derivable from the null class of sentences (cf [Semantics] 

6). Direct derivability is a relation between a sentence und a finite (possibly empty) 
class of Sentences; in this connection, thereforc, axioms are laid down to the effect that 
every first-place member of Dd is an element of the class 2, and that cvery second-place 
member is a finite subclass of <. 

‘An interpreted language, a language for which a sufficient system of scmantical 
rules is given, can be defined as an ordered triple (a,2,D) Here an axiom would say that 
the first domain of the relation D is identical with the class . If, as is usually done, an 
extensional metalanguage is used for semantics, then D is the relation of value assignment 
(25a) for the sentences of the language. E.g. “*D(,, the moon is spherical)” means as 
much us “The sentence ©; is truc if and only if the moon is spheric An axiom is 
stated to the effect that the relation 2 is many-one in a certain sense; more cxactly, that 
for any p and q and any clement 2 of the class &. if D(1,p) and D(S1,9), then p if and 
only ifq. If onthe other hand an intensionil metalanguage, containing a modal operator, 
eg, “it is necessary that", is used for semantics, then /) is taken as the relation of dlesiyna- 
tion (ie the relation between an expression and its intension, see 2Sb) for sentences. 
Eg. "D(21, the moon is spherical)” meuns here as much as “The sentence 2; designates 
the proposition that the moon is spherical”. The axiom last mentioned is now replaced 
by the following. For any p and q and any clement 21 of the class 2, if D(1,p) and 
1(21,q), then the propositions p and q are identical (i.e it is logically necessary that p if 
and only ifq). In cither of these two metulanguages (cxtensional or intensional), truth 
with respect to any given interpreted language (0,2,D) can be defined as follows: A 
sentence 2; is rrue if and only if: for some p, D(Si,p) and p. (Cf. [Semanties] 12-1.) 
{An alternative method applicuble in cither of thc two metalanguages takes the rclation 

Dina more comprchensive sense, us applying not only to sentences but to a more com- 
prehensive class D of so-called designators. (E.g. in language 8B the relation D may also 
apply to all closed expressions of the type system (see 21b).) By this method an inter- 
preted language is an ordered quadruple (0,¢,2,D). Here axioms are laid down to the 
effect that every clement of T is a finite scquence of elements of the class a; that the class 
of the first-pluce members of D is the class 2; and that 2 is a subclass of 2 A third and 
still more explicit method demands for the specification of un interpreted language the 
indication also of the class > of descriptive signs of the language (Sb). _In this method, an 
interpreted language is a quintuple (s,%,2,2,D). Then an axiom is added which says that 
bisa subclass of «. This most explicit form is convenient as a basis for definitions of the 
concepts of models, of vuluc-assignments, of the range of a sentence, of L-truth, and other 
L-concepts (sce 11).] 

Finally, an interpreted calculus is a language for which both syntactical rules of deduc- 
tion and semantical rules of interpretation are given. An interpreted calculus can there- 
fore be defincd as an ordered quadruple (0,2,Dd,D). Here axioms are stated like those 
for a calculus and others like those for an interpreted language. Sometimes we wish to 
require that the relation Dd be truth-preserving, ie., that any sentence which is directly 
derivable from true sentences is itself true We can formulate an axiom to this effect in 
the following way, without use of the term “true”. For any Sigs -, Sigs Zjy pty » Pash if 
Dd ZplZtys Ziq 1Piand and D(2/,.px) and D(Zj,g) and py and .. and py, theng. 
IFor the concept of an interpreted calculus, there are alternative, more explicit definitions 
which include 2, or both > and 2, in analogy to the altcrnative definitions of the concept 
of an interpreted language given above.] 

Incidentally, it is possible to give a definition of a calculus in a simpler form, using 
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instcad of the triple (s,2,Dd) simply the relation Dd The class © can be defined as the 
class containing all first-place members of Dd and all clements of second-place members 
of Diand nothing clsc. ‘The cluss « can then be defined as the class of all members of the 
sequences which are clements of the class 2 Similarly, a and 2 may be omitted in the 
definitions of un interpreted language and of an interpreted calculus However, the carlier 
formulations of the definitions, the ones which refer explicitly to the classes a and =, seem 
to be casier to understand and to work with. 



Chapter C 

The extended language C 

27. THE LANGUAGE C 

The language A described in Chapter A contains sufficiently many forms 
of expression to allow the formulation of most axiom systems and scientific 
theories. To carry out such a formulation, arbitrary constants of suitable 
types are chosen as primitive signs for some of the concepts of the theory or 
system in question, in such a way that constants for the other concepts can 
be introduced by definition. Later, in Part II, we will give examples of the 

formulation of axiom systems in language A. 
The present chapter, C, describes an extended language C. This language 

C contains all the forms of expression of language A except sentential 

variables. [Such variables appeared in A because they facilitate the state- 
ment of tautological formulas; they occur in A not in sentences, but only in 
open sentential formulas. Sentential variables are seldom useful in the 
formulation of scientific theories.] Thus, all the sentences of A are also 
sentences of C, Language C contains in addition a number of other forms 
of expression which often permit briefer and more perspicuous formulations 
of axioms and scientific sentences than can be obtained in A, AJI the 
illustrative sentences (axioms and the like) of Part II are formulated in 
language C, Most of these sentences are also formulated in language A, so 
the two formulations can readily be compared in abbreviation and simplicity. 
Some sentences will only be formulated in C because their formulation in 
A is too cumbersome, 
Language B, dealt with in the preceding chapter, contains all the forms of 

expression found in A except sentential variables and the constants defined 
in 17c, 18a, and 19. Since these latter constants can always be climinated 
from any context (by means of their definitions), it is clear that every 
sentence of A is translatable into a sentence of B. With the exception of 
‘)’, the new constants that appear in language C can similarly be eliminated 
from any sentence by means of definitions or analogous rules given for them; 
since B contains the A-operator to begin with, all sentences of C are likewise 
translatable into B. 

In Chapter B we laid down rules of formation for expressions in language 
B; these rules specified what forms of expression (sentences, sentential 
formulas, and expressions of the type system) were to be admitted into B. 
We do not explicitly lay down corresponding rules of formation for language 
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C. Instead, we simply assume that all forms of expression admitted into 
are also admitted into C, as well as forms resulting from the introduction 
of new signs in C. Again, we laid down syntactical rules of transformation 
for expressions in B, and by means of these rules defined the concepts of 
provability and derivability in B. If in the present chapter we say that g 
certain sentence of language C is provable (or derivable from certain other 
sentences of C), we mcan that the translation of this sentence into B jg 
provable in B (or derivable in B from the corresponding premisscs). Finally, 
we laid down semantical rules for B, on the basis of which we defined |. 
concepts, F-concepts, truth, and other semantical concepts. When any 

such concept is applied in the present chapter to a scntential formula of C 
we mean again that the concept in question applies in B to the translation of 
the cited formula into B. 

As we did for language A, so hcre for language C we frequently state 
theorems about the L-truth of certain sentential formulas. Here, as before, 
if an open scntential formula G; is L-true, so is each formula obtained from 
&; by prefixing arbitrary universal quantifiers—and in particular the sentence 
(sometimes called the “‘closurc” of S,) obtained by prefixing a universal 
quantificr for cach variable occurring free in ,. Further, each formula is 
L-truc which is obtained from this S, by arbitrary substitutions for its free 
variables—in particular, each sentence so obtained by substituting closed 
expressions for the free variables of S,. Is is to be noted that every sentence 
of language C specified in this chapter as L-true has a translation into 
language B which is L-true in virtue of the semantical rules for B and 
provable in virtue of the syntactical rules for B. 

In giving illustrative sentences of language C we often omit brackets, just 
as we did in language A. (These brackcts, it need hardly be said, cannot be 
omitted from any such sentence when its formulation is to be complete in 
the strict sense of the rules.) This omission of brackets is governed, in the 
first instancc, by the conventions given in 3c and 9a; additional conventions 
will be specified later. 

28. COMPOUND PREDICATE EXPRESSIONS 

28a. Predicate expressions. We now introduce compound predicate 
expressions. These expressions are formed from predicates or predicate 
expressions with the help of connectives heretofore used only for combining 
sentential formulas. The new compoundsare as follows: ‘(PV Q)a’ is counted 
as an abbreviation of the sentence ‘Pa V Qa’, and ‘PV Q’ treatcd as a predi- 
cate expression of the same type as ‘P’, viz. a onc-place predicate cxpression 
of the first level and of type (0); ‘(P. Q)a’ is counted as an abbreviation of 
“Pa. Qa’, and ‘P,Q’ as a predicatc expression; ‘(P> Q)a’ as an abbreviation 
of ‘Pa> Qa’, with ‘P> Q’ a predicate expression; ‘(P= Q)a’ as an abbrevia- 
tion of ‘Pa=Qa’ and ‘P=Q’ a predicate expression; and ‘(~P)aq’ asa 
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reformulation of ‘~(Pa)’ or ‘~ Pa’, with ‘~ P’ a predicate expression. We 
agree to employ such abbreviations only when the two predicatcs written 
separatcly have the same argument-cxpressions. 
Sometimes the techniquc of abbreviation just illustrated can be applicd 

more than oncc in the same sentence, in which case it Icads to still other 
compound predicate expressions. E.g. *P\a@VP2a > ~ Pxa’ abbreviates 

first into ‘(P, VP2)a > (~ P3)a’, and then into “(P, VP) > (~P3))a’; this 
last, by the conventions of 3c regarding omission of parentheses, comes to 
“(P)VP2 > ~Ps)a’, whence we have the more elaborate predicate expression 
‘P| VP, > ~P3’. The compounding of predicate expressions is also possible 
when the predicates are of any other type; e.g. “(R, > R2)(a,b)’ is the abbre- 

viation for ‘R,(a,b) > Ro(a,b), as is “(My VM2)(P)' for ‘M,(P)V M,(P)’. 
To Icgitimatize this usc of conncctives in building up compound predicate 

expressions we introduce the following definitions for predicate expressions 
of the simplest type. Analogous definitions are understood to hold for each 
other type of predicate variable. 

p28-1. a. (~F)x = ~(Fx). 
b. (FVG)x = FxVGx. 
c. (F.G)x x.GX. 
d. (F>G)x = (Fx> Gx). 
e. (F=G)x = (Fx=Gx) 

Compound predicate cxpressions can appear as argumcnt-expressions of 
highcr-Icvel predicates. In language A we could only usc the cardinal 
predicates ‘0’, ‘I’, ctc., on predicatcs, not on compound predicate expres- 
sions. Thus e.g. to translate into A the sentence “There are 5 (individuals) 
which are P, and P2”, we first had to definc a predicate ‘Q’ by ‘Ox = 
P\x.P2x’ before giving the formulation: ‘5(Q)’. In language C we can 
avoid the introduction of any new predicate, and simply use the predicate 
expression ‘P;.P,’ to write: *5(P,.P2)’. 

28b, Universality. A property of individuals is called universal provided 
every individual has this property. Correspondingly, in the terminology of 
classes; a class of individuals is universal provided every individual bclongs 
to this class. Generally, a class of any type is said to be universal if cach 
entity of that type belongs to this class. Our symbol for universality is 
‘U’; and “the class (or property) P is universal” is rendered ‘U(P)’. Since 
‘U(P)' is clearly synonymous with ‘(x)Px’, the following definition is 
natural: 

D28-2. U(F) = (x)Fx. 

Analogous definitions are undcrstood to hold for predicates of any other 
type, bc they one-place or many-place. E g. ‘(x)(y)Rxy’ can be abbreviated 
‘U(R). In general, given an n-place predicatc expression U; (with n>1) of 
arbitrary type and arbitrary composition, we take U(,) to be the abbreviation 
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for (0;,)(0;,)--(0;,)[U(V;,,P;,-59;,)]- We make frequent usc of ‘U” in 
such abbreviated formulations, espccially in connection with compoung 
predicate expressions. E.g. the sentence ‘(x)(Px.~ Qx)’ is first written 
‘((P.~ Q)x’ and then ‘U(P.~ Q). 

If (x)(Px > Ox)’, ic. ‘U(P> QY, holds, then we say that P is containeg 
(or: included) in Q; in the terminology of classes, P is a subclass of Q. Our 
notation for this is ‘P= Q’. Similarly, when ‘(x)(»)(Rxy > Sxy)’ or 

‘U(R> SY holds, we say that R is included in S, or R is a subre/ation of § 
and write ‘RCS’. The definition: ° 

D28-3. (FOG) = U(F>G). 

Analogous definitions are understood to hold for predicate expressions of 
any other type. Generally: if &, and %; are n-place predicate cxpressions of 
the same type, then U,< &; is taken as an abbreviation for U(%;>%;), which 
in turn is an abbreviation for (1%,). .(D4,MA(Pkj9-+-Pe,) > Uj(Oxyse-Pkg) le 
Suppose U(W%;) is a sentential formula, whcre W; is any (open or closed) 

predicate expression. If U(%;) stands alone, i.e. is not a part of a larger 
formula, then we consider it legitimate to suppress ‘U’ and writc simply 9, 
Thus e.g. we writc ‘PV Q" instead of the sentence ‘U(PV Q)’ and ‘F,~G' 
instcad of the sentential formula ‘U(F.~G)’. Ifa list of L-true sentential 
formulas given in a thcorem includes a predicate expression %;, what is 
indicated thercby is that U(%,) is an L-true sentential formula. When 
U(%,) is a component of a larger formula, the ‘U* must not be suppressed, 
because otherwise the difference betwcen the following two cases would be 
obliterated: (1) ‘~ U(P)’, an abbreviation for ‘m(x)(Px)’, which says “not 
every individual is P”; and (2) ‘U(~P)’, an abbreviation for ‘(x)(~ Px), 
which says “no individual is P”. We may suppress the ‘U” in case (2) and 
write simply '~P’; we may not suppress the ‘U’ in case (1). One last 
remark. Since ‘U’ is applicable to predicate expressions of arbitrary type, 
we take our notational suppression of ‘U’ to be, too. E.g. taking ‘M’ to 
be a one-place predicate of the second level, we can abbreviate ‘(F)M(F)’ 
to ‘U(M)' and this in turn—provided it stands alone—to ‘M’. 
A class (or property) is said to be empry or null provided no entity of the 

appropriate type belongs to it; and otherwise, non-empty or non-null, Our 
symbol for non-emptiness is ‘3’; and “the class P is not empty” is rendered 
"3(P)y. Since *3(P)’ is clearly synonymous with ‘(3x)Px’, and ‘3(R)' with 
“(ax)(ay)Rxy’, the following definition is natural: 

D28-4. 3(F) = (3x)Fx. 

Analogous definitions arc understood to hold for predicates of any other 
type. Generally: if as above &, is an arbitrary predicate expression, we take 
3(%j) to be the abbreviation for (30,,)...(30;,)[Uj(¥;,.-.50;,)]-_ In contra: 

distinction to ‘U’, the symbol ‘3’ may not be suppressed in any case. 
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Again, the use of ‘3’ for abbreviated formulations has sp.cial advantage 
with compound predicate expressions, E g. the scntence ‘(3x)(Px.Qx)' is 
first transformed into *(3x)(P.Q)x', and then into ‘3(P.Q)’; similarly, 
“xia y)( RxyV Sxy)’ can be abbreviated ‘3(RVS)'. : 
The formulas displayed in the following theorem represent simple applica- 

tions of DI, D2, D3 and D4 to the formulas given in T14-1,2. Analogous 
results obtain, of course, for predicate variables of any other type. 

‘728-1. The following scntential formulas are L-true: 

a. ~U(F) = 3(~F). 
~3(F) = U(~F). 

» UF) = ~3(~F). 
H(F) = ~U(~F). 
UF>G) = ~3(F.~G). 

U(F.G) = U(F).U(G). 

. (FVG) = 3(F)V3(G). 
. FOG > [U(F)> U(G)). 

FCG > [3(F)> 3(G)). 
i) = (FCG).(GCF). 

) > [U(F)= U(G)). 
)> [a(F)=3(0)). 

- (F.G) > 3(F).3(G). 
. U(F)V UG) > UFVG). 

. (FOG).3(F.H) > 3(G.H). 

. UF) > 3(F). 
» (F S G).(GCH) > (FER). 

28c. Class terminology. In the word language we sometimes speak of 
propertics, sometimes of the “corresponding” classes. The difference, 
however, is only in our mode of speech; hencc it is unnecessary to include in 
our symbolic object language, parallel with predicates, other special 
expressions for their corresponding classes. Any predicate expression of 
language C may be used both as an expression for a property and as an 
expression for the corresponding class. In translating c.g. the sentence ‘Pa’ 
into the word language, we may at our pleasure use either the terminology 
of propertics (thus reading ‘Pa’ as “a has property P") or the terminology of 
classes (reading ‘Pa' as “a belongs to class P” or “‘a is an element of class 
P”), It is because these two word-language versions have the same meaning 
that we can dispense with two different symbolic paraphrases of them in C. 
Word-language versions of predicate expressions are often more compact 
and perspicuous when phrased in the terminology of classes. Thus e.g. the 
sentence ‘(PV Q)a’ is customarily translated ‘a belongs to the union of 
classes P and Q”, the sentence ‘(P. Q)a’ as “a belongs to the intersection of 
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classcs P and Q”, and the sentence ‘(~P)a’ as “a belongs to the complemen, 
of class 7”. 

Supposc we pick from language A an arbitrary scntcntial formula with 
sentential variables, cg. the tautology ‘~(pVq) = ~p.~q’. By substity. 
tion we can obtain from this tautology another tautological sententig] 
formula with predicate variables, e.g. ‘~(FxVGx) = ~Fx.~ Gx’. Prefixing 
to this last the universal quantifier ‘(x)’ (in view of T13-Ic) and using our 
‘U’ abbreviation, we obtain the L-true formula ‘U[~(FVG) = ~F.~GP 
and so finally ‘~(FVG) = ~F.~G’. In this way there can be associated 
with each tautology containing scntential variables a precisely analogous 
L-true formula containing predicate variables of any type. Thus we obtain 
formulas of the so-called calculus of classes of earlicr systems—with the 
difference, however, that herc we obtain them in a direct simple way from 
the predicates themselves, without the use of any special class cxpressions 
Examples of such formulas are given in the following theorcm; cach of these 
formulas is securcd from a tautology of language A in the way indicated 
above, the tautologies employed being those of T8-1,2,6. (Note: when ‘>" 
occurs principal scntential connective in a tautology, it is transformed 
into ‘<’ in accordance with D3.) We remark again that formulas analogous 
to those below also hold for predicate variables of any other typc. 

+T28-2. The following scntential formulas of language C are L-truc: 

a, FV~F, 
b. ~(F.~F). 
ce FC FVG. 
d. F.G CF. 
e F.nF CoG. 
f. (FVG).~F OG, 

(F.G)V(F.H). 
I. FV(G.H) = (FVG).(FVH), 
m, F = (FVG).(FV ~G). 
nF = (F.G)V(F.~G). 
0. F = FV(F.G) 
p. F = F.(FVG). 
q. FVG = FV(G.~F). 
r. F.G= F.(GV~F). 

28d. Exercises. Translate the following sentences, using compound predicate expres- 
sions and omitting *U* wherever possible. — 1. “Every book is bluc”, — 2. “‘Not cvery 
book is blue”. — 3. “No book is bluc™ (i, ‘every book is not-blue”). — 4. “There isa 
blue book". — 5. “There is a not-blue book". — 6. “There are (exactly) 5 blue books". 
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2h rs arc male” (use ‘mem;", cf. 18a).~ 8. “There are even (numbers) and odd 
jnumbers)".—-9. "There are no (numbers) which ure both even and od 10. “Every 
(natural number) belongs to the first-domain of the predecessor relation", — 11, “Not 
ery (natural number) belongs to the second-domuin of the predecessor relation” (eg , 
Odoes not) -—32, “2 is an even prime (number)”. 

29. IDENTITY. EXTENSIONALITY 

29a. Identity. In language C we use the identity sign ‘=’ not only (as 

jn language A; cf. 17) betwecn individual expressions, but also (as in language 
B) between predicate expressions and between functor expressions. What 
identity means here is what it meant in language A, viz. agrcement in all 
properties. E.g. the sentence ‘P= Q” says that every property of propcrtics 
possessed by property P is also possessed by property Q, and conversely; 

thus ‘P = 0" is synonymous with the sentence (V)[MP)=M(Q)}'. If, there- 
fore, ‘P= Q" and somc other sentence ‘..P .P..’ about P both hold, then the 
corresponding scntcncc *..Q..Q..' about Q also holds Similarly, if ‘k,’ and 
‘ky’ arc functors, the sentence ‘k, =k,’ says that the function k, has all the 
properties that function kz has, and conversely; so that again ‘k; =k,’ is 
synonymous with ‘(N)[M(k,)=M(k2)). And further, given ‘k,=k,' and 
another sentence *..k,..k,..” about k,, then the sentence *..k2..k2..” about kz 

also holds. Correspondingly, the thcorem regarding interchangeability on 
the basis of identity (it is T24-7(b)) holds in C. 
The identity principle P8 of language B (sec 22a,b) is in accord with what 

has just becn said. With its help e.g. ‘Pa> Pb’ is derivable from ‘a=h’ on 
the one hand, and (by substituting ‘~ P’) ‘~ Pa> ~ Pb’ on the other; from 
this last by transposition (cf. T8-6i(1)) comes ‘Pb> Pa’, which together with 
‘Pa> Ph’ Icads us to ‘Pa=Ph’, Thus we sce that it is adequate to phrase P8 
with the conditional sign. 
The following theorem tclls us that identity is (totally) reflexive, symmetric 

and transitive. 

+729-1. Suppose %;, U; and , arc expressions of the type system, then 
a scntcntial formula having one of the following forms is 
L-true: 

YU, 
U,) > A =A,. 

As carlicr (see D17-1b), so here we write ‘#’ for “non-identical”; in the 
present context, of course, ‘#” can stand between two expressions of any 
one type. Non-identity is frequently used when the word “two” appcars 
in a verbal text. E.g. “For any two points, there arc ...” is rendered 

OI PH). Pry) #9) > G21(--.)]- 
Instances of the usc of the identity sign betwcen predicate expressions 
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may be found in T29-3, T30-1, and D30-2; and of similar usage respectip, 
functor expressions in 33c. 8 

Somctimces we find it convenient to use ‘J’ as a conventional Predicate 
designating identity, and similarly ‘J’ for non-identity—a practice that has 
proved advantagcous in connection with other two-placc predicates 
Morcover, we can use ‘J/,(a,b,c)’ as a compact way of saying that a, h and ¢ 
are threc different individuals; ‘J,’ can have a corresponding role Tespecting 
four arguments, etc. 

D29-1, Ixy = x=y. 
D29-2. a. Jxy = x#y. 

b. Jyxyz = (x#y . x#z. y#z). 
ce. Jgxyzu XF#Y .X#Z.X#U.VAZ. YAU. Z#U), 

29b, Regarding the types of fogicul constants. In view of D29-1, the predicate +; 
should only occur with individual arguments, asc g in ‘Jab* However, since *=" is also 
used between expressions of higher levels, we ugree to extend the scope of ‘/* 
pondingly and so to admit sentences like */(P,Q)", */(R,S)', “1(M),Mz)', Cte. These 
arguments being of different types in different contexts, the sume is true of ‘/". [Thus iq 
the sentence ‘/ub", ‘/” is of type (0,0) and the first level; in */(P,Q)*, ‘I is of type ((0),(0)) 
and the second level; in */(R,S)’, it is of type ((0,0),(0,0)) and the second level; and in 
“1(Mi,Ma);, it is of type (((0)),((0))) and the third level.] Strictly speuking, the type rules 
we laid down curlicr do not permit such un extension: to write sentences like ‘fab’, 
‘1(P,Q)', etc , in strict adherence to our formation rules, we would have to use in place 
of a single sign °/" a series of different signs--one for zach of the types in which it is used 
(These different signs might e g. be made up by adding the particular type designation to 
‘1’ as a subscript */,0)', ‘/((0),10))'s Cte.) However, entirely parallel theorems would 
hold for these different signs; hence in practice it is convenicnt to suppress distinctive 
notations (cg. the type-designation subscripts) and simply use 7". The type of */" in any 
given sentence Is to be gathered from the context. 

‘Whit we have just noted ubout the predicate ‘/* applies with equal force to the cardinal 
numbers ‘0’, ‘I’, ‘2°, etc, introduced in 17¢. Theorctically, there are cardinal numbers of 
the sccond level, of the third level, cte ; and we ought properly to give them distinctive 
notutions—e.g *2((9)9(P)", *3cc(a»9(M4)", etc. For each such kind of cardinal number 
however, the familiar theorems of arithmetic hold in the same way. Hence we suppress 
the notational distinctions, write simply ‘3(P)', 3(M)’, etc., and leave it to the context 
(viz the type of the argument-expression) to determine precisely the type of ‘3’. The 
same applics to arithmetical theorems: we give them only once, without regard to type 
distinctions; e g we write simply ‘swm(2,3)=5S'—ie. “2+3=5" (sce 37b). Strictly, the 
expression ‘sum(2,3)= 5° is not a sentence of language C, it represents rather the infinite 
class of sentences obtainable from it by subjoining to cach of the signs *2', ‘3* und ‘S* the 
same type index [of the form ((s,))] and simultuncously to the functor sign ‘sw’ another 
suitable index [viz (((44))((eo) : (a). 

For cach logical constant written without a type index (more properly, for each family 
of iclated logical constants differing only in type) there is a simplest type which we will 
call the Basie rvpe of this constunt, E.g. the basic type of */' is (0,0), that of ‘2' is ((0), 
and that of ‘sun’ is (((0)),((O)): (0). [The types specified for the various logical con 
stants given in the Examples of 21b are their basic types.] 

Theoretically, therefore, language C (as well as the usual systems with a distinction of 
types) has an infinite multiplicity of arithmetics: one for the cardinal numbers of thé 
sccond level (referring to classes of the first Icvel), another for the cardinal numbers of 
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the third Ievel (referring to classes of the second level), and so on. The question arises, 
Can this multiplicity of urithmetics be avoided without giving up the distinction of types? 
Our device of suppressing the type-index subscripts has the practical merit of reducing 
the multiplicity of arithmetics to a single system of arithmetical formulas, but naturally 
the theorctical multiplicity remains, One possible way of avoiding this multiplicity con- 
gists in adding nansfuite levels. Using the transfinite ordinal numbers of set theory, we 
designate the lowest level that is higher than all the finite levels as level w, the next beyond, 
this us level #+1, ctc. There is then put forward a rule of formation specifying that a 
predicate of any transfinite level can take argument-cxpressions of any lower level what- 
ter. As before, descriptive predicates continue to be ussigned finite levels (c.g. *P' the 
first level, *M" the second, ctc.); but now, logical constants are assigned transfinite levels. 
As for variables, they can either be assigned fixcd levels and types (as we have done in our 
anguages) or left unassigned If the signs ‘0','I', etc , for cardinal numbers are assigned 
evel «, then ‘3(P)', "3(M)", ete , turn out to be proper sentences of the language (und not 
merely ambiguous abbreviations, as is the case with us). Similarly, ‘swm(2,3)= 5" 
sentence of the language, and ‘swm' is a functor-cxpression of level w+ 1. In this fashion 
we arrive at one arithmetic applicable to descriptive classes of any finite level. Up to 
the present, the use of transfinite levels hus not been studied very extensively; only brief 
references to it have been made by Hilbert and Gddel (sce [Syntax] §53) and by Tarski 
({Wahrhcitshegriff] 136 f, [Mctamathematics] 270 ff.). The first attempt at a system of 
this kind’ Frank G. Bruner, Mathematical logic with transfnite 1) pes, privately printed, 
Chicago, 1943 (see the review in Jour. Symb, Logic, 9, 1944, p 72). 

29c. Extensionality. The sentence ‘(x)(Px=Qx)', more bricfly ‘P= Q’ 
in view of 28b, asscrts that properties P and Q both attach to the same indi- 

viduals, ic, P and Q have the same extension. This can be the case (i.e. 
‘p=Q’ can be true) cven when ‘P’ and ‘Q’ have different meanings. If, 
however, ‘P= Q" is L-true, then ‘P’ and ‘Q” have the samc meaning, In 
contrast to ‘P=Q’, which says that P and Q agree in the individuals they 
apply to, the sentence ‘P= Q" says P and Q agrec in the properties (of 
second levcl) that apply to them. Suppose a second-level property, say M, 
issuch that M applies to every property having the same cxtension as P as 
soon as it applics to P; then we say that M is extensional, i.c. depends only 
on the cxtension or scope. E.g the cardinal number 5 is an extensional 
property of the sccond level, since from ‘S(P)’ and ‘P= Q" there follows 
‘5(Q)’. Indced, it can be shown that all sccond-level properties definable 
by expressions of language C (either expressions introduced so far, or still 
to be introduced) are extensional; and the samc holds for properties of 
higher levels. Thus in language C it is the case that from ‘P= Q’ follows 
‘P=Q'. Since further ‘P= Q’ follows from ‘P= Q’, it is the casc that the 
two sentences ‘P= Q’ and ‘P= Q’ are synonymous in language C. Further, 
‘(x\(Px= Ox)’ and ‘P= Q" are technically L-cquivalent in language B, for 
we have there admitted only extensions as possible values for valuc-assign- 
ment (sce 25a). Moreover, in B these two sentences are derivable from each 
other with the help of the primitive-scntence schema P9 (cf. 22a). The same 
holds for predicate expressions of all other types, as well as for functor 
expressions of any typc. Our object languages are thercfore all extensional 
languages. 
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+T29-2. The sentences (0,,)(P4,)---(Bx,)( Ui Bigs Pags-osPeq) Am Uy(Veysd, 
0,,)) and U;=Y; are L-cquivalent, where n>! and either (a), 
and Y; are n-place predicate expressions of the same type ang 
a, is “=”, or (b) U, and &, are n-place functor expressions of the 
same type and a,, is ‘=’ 

729-3. The following sentential formulas are L-true: 

a. U(F=G) = (F=G). (From T2.) 
b. U(F).U(G) > (F=G). (From (a).) 
ce. ~3(F). ~3(G) > (F: (From (a).) 
d. (FEG).(GEF) = (F=G). (From (a), T28-1j.) 
Any two classes which contain each other are identical. 

Non-extensional predicates (whose argument-expressions are sentences, predicate 
expressions or functor expressions) occur in certain logical systems, ¢g the logic of 
modalitics, If it is desired to introduce such predicates into our object language, then 
the primitive schema P9 must be omitted from the syntactical system, and intensions 
(ruther than extensions) taken as possible vulucs in the scmantical system. As we have 

previously remarked (in 10b), non-extensional languages arc substantially more compli. 
calcd than exlensional ones On the other hand, it appcurs that everything which to 
date has been expressed in terms of non-cxtensional predicates can be expressed (in a 
different way, to be sure) without such predicuics, ic. in an extensional language. J am 
inclined to think that this is the case not only for the non-extensionul predicates known, 
so far, but in general (a conjecture known as the “thesis of extensionality"). On this 
point, cf, [Syntax] §§65-67; [Mcaning] §1| and §32 (Mcthod V). 

30. RELATIVE PRODUCT. POWERS OF RELATIONS 

30a. Relative Product. This section and the next treat tlic main concepts 
in the logic of (two-place) relations and introduce symbols for them. By 
the re/ative product of the relation R by the relation S is meant that relation 
which cxists between x and y if and only if there is a u such that x bears the 
relation R to u and w bears the relation Sto y. For “the relative product 
of R by S” we usc the symbol *R|S’. Thus: 

D30-1. (H|K)xy=(3u)(Hxu. Kuy). 

We sec that ‘(R|S)ah’ means: “a is an R of an S of 6” (c.g. “.,. is a son ofa 
brother of ...”, is greater than half of ...”). 

The stroke ‘|’ has the samc logical character as a functor. It differs from 
what we have called functors only in the uncssential detail that it stands 
between its two argument-cxpressions rather than before them. The same 
remark applics to certain connective signs we will shortly introduce, and 
which for the sake of definiteness we cxhibit here (in each casc, between two 
letters): “R“P? (D32-6a), ‘k**P’ (D32-6b), ‘Rin P’ (D32-7), and ‘Rs’ 
(D35-2). 
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With a view toward economy in the use of brackets, let us agree now that 
all the new signs mentioned in the previous paragraph arc more cohesive 
than the signs ‘V’, ‘.”,*>’, ', and ‘=" between predicatc expressions (the 
last sign also between individual cxpressions). If, therefore, X; is a full 
expression of the stroke or of any of the other new connectives, the brackets 
around %, may be omitted whenever %, enters as a component of one of the 
familiar conncctives last mentioned. [E.g. parcnthescs may be omitted 
from the following expressions: ‘(R|S)V(R in PY, (R"P)>(k“Q);, (R'h)= 
a’, on the other hand, they may not be omitted from: ‘(R; VR2)|(S)-S2)’, 
“(RVS)(P.Q)'.) Further, as Tla will tell us, the relative product is 
associative, i.c. ‘(R|S)|7” is synonymous with ‘R|(S|7)'; hence we may 
omit parcnthcses from both expressions and write simply ‘R|S|7’ It 
should be remarked that the relative product is in general no commutative: 
+R|S’ is generally not synonymous with ‘S|R’;¢.g “ais a friend of a teacher 

of 6” is different from “‘a is a teacher of a friend of b.” 

Part (a) of the following theorem is the associative law for the rclative 
product; parts (b) and (c) arc distributive laws for the relative product 
respecting disjunction; parts (d) and (c) are the same respecting conjunction 
(observe that these parts merely claim inclusion, and not identity). 

730-1. Scntential formulas of the forms (a) through (f) below are L-true: 

sta. (A,| H2)|Hy=11,(H2| A). 
. H (Ky V Ky) = 11K; V HK. 
(Ki VKq)|H= Ky|IV KH. 
d. 1I\(Ky.K) © H|Ky.H|Kp. 
e. (Ky. Ka)|H1 © Ky|F. Kal Hl. 
f. 3(|K) = 3Qmem(H).mem,(K)). 

Exercises. 1. Give informal proofs of the following: a) Tla; b) Tle — 2. Give 
counter-cxamplcs 10 the following: a) *f/|(K1.K2)= H|Ki. H|K2', b) “HEH, 

s 

0b. Powers of relations. We writc ‘R?’ as an abbreviation for ‘R|R’, 
‘R» for ‘R2| R’, etc., and call these relations the (sccond, third, ctc.) powers of 
R. Of these, the second power is uscd quite frequently (c.g. “‘... is a friend 
of a friend of ...", “‘... is the father of the father of ..”). Continuing the 
analogy with arithmetical cxponents, Ict us agrec that ‘R!’ stands for the 
relation R itsclf (conscquently the notation ‘R” is scarcely ever seen), and 
that ‘R° stands for the relation of identity betwccn the members of R. 
Continuing the analogy into ncgative exponcnts, we take ‘R-!’ as a designa- 
tion for the converse (or inversc) of the relation R. l.e., R ! is the relation 
comprising all the pairs of R, but with their members in the reverse order: 
‘Rlab' is true just in case ‘Rba’ is. E.g. the relation Parent (ie. ‘... is a 
parent of ...”) is the converse of the relation Child (i.e. “. . is a child of ...”), 
and converscly. The converse of Square is Square-root. We can (if we 
wish) continue on with other negative powers, writing ‘R-?’ in place of 
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‘RORY, or (R)”, or *(R2)-"—all threc of which turn out to be 
synonymous. Similarly for ‘R 3", ctc. Our formal definitions follow: 

30-2, a, Hxy = (x=y).mem(H)(x). 
b. HI=H. 
ce. H2=1\H. 
d, H3=H?\H. 
Ete. 

D30-3. H-'xy = Hyx. 

The theorem below states properties of the converse relation; in particular, 
part (a) tells us that the converse of the conversc of R is R itself, 

7130-2. The following sentential formulas are L-true: 

+a. (HO) t=H. 
b. (H|K)-1= K-71 H-t, 
c. (HVK) !=H-'V Kl, 
@. (H.K) =H. KO, 

The symbols here defined—and in general the constants of Janguage C 
defincd in this chapter—are intended to be applicable also to expressions of 
appropriate typcs on higher levels (cf. 29b). E.g. ‘|’ can be used between 
two-place homogeneous predicate expressions of arbitrary (equal) types; 
‘Sym’ (see D31-1a) likewise can take as an argument-cxpression a two-place 
homogcencous predicate expression of any type. And furthcr, the theorems 
stated have corresponding versions appropriate to othcr types: which is to 
say, the technique of raising levcls (T16-1) applies to these theorems, 

Exercises. 1. Give informal proofs of the following: a) T2a;, b) T2b. — 2, Decide 
whether the following f, if not, give a counter: 

example)’ a) ‘H|H '=H*; b) *H|H-'=H #1"; ¢) "; d) ‘memn(HY)> 
(H|H 3)(x,x)"s ) *U(memaH)> mem 2)"; f) Uonemtt)) “sd Uline 2). 

30c. Supplementary remarks. If our language has a variable ‘n' for natural numbers 
(0,1,2,...), as e.g. the language form spccified in 40a docs, then the infinitely many defini- 

tions put forward in 930-2 cun be contracted into a single recursive definition running as 
follows* 

D30-2*. a, Hxy = y).mem(H)(x), 

b. H" 1=HH, 

Powers with negative exponents arc defined thusly: 
D30-3*.  H-#xy = Htyx 

If our language supplies variables ‘m' and ‘n’ for integers (positive and negative whole 
numbers, and 7ero), then we have the following: 

1, For any relation R: if m and » are non-negative, then “Re |R"= Rm and (Rmp= 
Rew are L-truc. 

2. For any integers m and »; if R is 2 one-one relation, then *Rm| RY Rm+#" and 
“(Ret Roe" are L-truc. 
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Examples for (1) are: *R0| R= R', *R3|R2= RS; (R¥2= RS In connection with (2), 
note that only inclusion—not identity —is claimed in the first formula. examples for (2) 
re. *RS|R_3C RP, “(CR 2)2= R- The contents of (1) and (2) are the practical basis of 

our definitions for powers of relutions when the exponents are non-positive integers 
Each purticular instance (involving definite numbers as exponents) of theorems (1) and. 
(2) is 1-true in language C. c.g *Um 20H )>(115{11 $C #12)' is 1 -true in On the other 
hand, (1) and (2) themselves cannot appear in C because numerical variables do not 
occur as exponents in C 

Examples. Using our notations for relative product and for powers of rclations, we 
can give more concise definitions of certain family relations (recall the discussion in 
15c( 1) and 17b) 

Child") 1 
("Brother") 2 
Grandparent”) 3. GrPar= Pa? 
(*Grandfather") 4 GrFa= Fa|Par. 
(*Grandchild") 5 GrCh=Ch. 
(“Grandson”) & GoSe Son|Ch. 
Wife” 7. 
("Spouse") R Ls Hus Wif, 
(“Brother-in-law") 9 BrvL= Bro\ WifV HusiSis 

Half-brother") 10. HaBro= Son|Par.~ Bro.J 
("Father-in-law") 11 Fal= FalSp. 
: Uncle") 12 BroV BroL)\Par 
Exercises. 1. In the system of family relations just described, define the : tollowtag 

relational concepts: a ‘Sister b "Grandmother", ¢ *Grand-daughter™, tere 
in-law": € ‘Half-sister", f “Mother-in-law", g “Son-in-law"; h Satan ke law! 
i. “Aunt'': | “Nephew Niece”. — Translate the following sentences 2. “a 
(the) father of a friend of b*.- 3. “Sometimes (ie there is. ) a friend of a friend (of 
someone) is the latter's friend (too) (u using variables, b. without variubles. in accord: 

ance with 28) - - 4, “If a (number) is smaller than the predecessor of another (number), 
then it is (also) smaller than the other (number)", (a) with variables, (b) without variables 

“If a (number) is the predecessor of the predecessor of un even (number), itis (also) 

31. VARIOUS KINDS OF RELATIONS 

31a. Representations of relations. Both an n-place predicate of the first 
level (n > 1) and the n-placc relation this predicate designates have for their 
extension the class of thosc ordered #-tuples of individuals for wiich the 
predicate holds If the extension of a predicate (or its corresponding 
telation) is finite, we may specify this cxtension by way of a /ist that com- 
prises the n-tuplcs of the extension E g. when it is finite, the extension of 
atwo-place relation may be specified by a list of all the pairs belonging to it, 
However, the list is just one device for specifying the extension of a finite 
two-place relation. Two other deviccs are frequently used to advantage 
because of thcir intuitive appeal, viz. the arrow diagram and the matrix. 
The arrow diagram of a relation R represents the R-members by points 

and the R-pairs by arrows (see Fig. 1). Thus, if (a,b) is an R-pair (i.e. if it 
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is the casc that Rab), then an arrow is displayed leading from point a to 
point b. If itis the case that both Rab and Rba, a double arrow is displayed 
between points a and b. If it is the case that Rag, i.c. if (a,a) is an R-pair, 
we display an arrow that starts at point @ and loops back into point a. 

Fic. J. Arrow diagram of the relatior R 

The matrix of a relation R having n members is constructed as follows: 
The n members arc fixed in some (arbitrary) sequence. A square array of 
n rows and n columns is put down, and both the ith row and the ith column 
(i= I,...42) are coded with the ith member of the scquence into which the 
n members were initially ordered (sec Fig. 2). If, now, it is the case that 
Rab, we cnter the figure ‘I’ at the intersection of the row coded ‘a’ with the 
column coded ‘4’; and we enter the figure ‘O' there if it is not the case that 
Rab. Places in the square with ‘I’ are called occupied, the others unoccupied, 
That diagonal of the square running from upper left to lower right is called 
the main diagonal; it consists of placcs corresponding to pairs with identical 
members, i.e. (aa), (b,6), (c,c), (dd), ete. Two places which are sym- 
metrically located with respect to the main diagonal (c.g. the place cor- 
responding to (6,¢) and the place corresponding to (d,h)) are said to be 
converse to each other. 

abcde 

a 11000 

b 10100 
c 00000 
d} 003100 
c 01000 

Fic. 2. Matrix of the relation R 

Example. Suppose a relation 2 is given by the following fist: “(a,a), (a,b), (6,4), (6,0, 

(dsc), (€,6)". The arrow diagram of this relation R is shown in Fig. |. (It is obviovs, 
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of course, that in an urrow diagram no importance is to be attached to the arrangement 
Gf the points all that counts is the pattern of connections shown by the arrows. Any 
(ransformation of Fig | which preserves this pattern yields again an arrow diagram of 
"A matrix of this relation R is shown in Fig 2 Any permutution of the rows of this 

snatrix, together with the same permutation of its columns, produces another matrix of R. 

3ib. Symmetry, transitivity, reflexivity. A rclation R is called symmetric 
jf for cach R-pair the relation R also holds in the inverse direction, 
je. (x)()(Rxy> Ryx)' or, more concisely, *ROR-". E g. if a is parallel 
to b, then 6 is necessarily parallel to a; thus the relation Parallel is a sym- 
metric relation. Examples of other symmetric relations are Similar, 
Contemporary, Sibling. Wc say R is non-symmetric if the condition just 
stated fails, i.e, if ‘~(R&R-1)' holds; in other words, if there is at least one 

jr for which R holds in a single dircction only, i.e. if ‘3(R.~ R-)’ holds. 
And in particular, R is said to be asymmetric if there is no pair for which R 

holds in both directions, ie. if R and the converse of R exclude cach 
other: ‘RE ~R-". Examples of asymmetric relations: Father, Less. The 
relation Brother is an example of a relation which is neither symmetric nor 
asymmetric. It is to be noted that these threc kinds of relations provide a 
three-part classification of all (homogencous two-placc) relations, as indi- 

cated by Fig. 3, 

symmetric non-symmetric 
ee ee —_ 

asymmetr’ 
Fis. 3 

The arrow diagram of a symmetric relation displays only double arrows 
(looped arrows count as double arrows), while that of an asymmetric 
relation contains no double arrows. The matrix of a symmetric relation 
possesses symmetry respecting the main diagonal, i.c. the place converse to 
an occupied placc is also occupied; the matrix of an asymmetric relation is 
such that each place converse to an occupied place is unoccupied. 
Another three-way classification of all (homogencous two-place) relations 

is furnished by the concepts which follow. We say that a relation R is 
transitive if the following condition holds: ‘(x)(y)(z)(Rxy.Ryz > Rxz)', or 
in brief ‘R2< RK’, E.g. when a is parallel to 6 and 6 is parallel to ¢ it is 
necessarily the case that a is parallel to c, whence we sec that the rclation 
Parallel is transitive. Examples of other transitive relations are Equal, Less, 
Less-or-Equal, Predecessor. We say R is non-transitive if the condition just 
stated fails. And finally, we say R is intransitive if R2 and R exclude each 
other, i.e. if the condition ‘R2?< ~ R” holds. Examples of an intransitive 
telation: Father, Successor (in the sequence of natural numbers). The 
lations Brother and Friend are neither transitive nor intransitive. The 
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arrow diagram of a transitive relation has the following characteris), 
property: if a chain of two arrows Icads from a to c (i.e. if an arrow | 
from a to some other point, and a second arrow leads from that point to ¢) 
then the diagram will always have an arrow that leads directly from ator. 
A third three-way classification results from the following definition,’ 

We say a relation R is reflexive provided each R-member bears the Telation 
R to itself, ic. provided ‘(x)(mem(R)x > Rxx)’, or briefly *R°< R’, holds 
Examples: Contemporary, Equally-long, Smaller-or-Equal. When 4 
condition just specified is not satisfied, R is called non-reflexive, 1 no 
R-member bears the relation R to itself, i.e. if R and the identity relation are 
mutually exclusive, R is called irreflexive: ‘R°< ~ R' or ‘R&J*. Examples 
Father, Brother, Smaller. The following relations are ncither reflexive Nor 
irreflexive’ ... votes for is murderer of .... If each individual bears 
the relation R to itself, i.e. if ‘(x)(Rxx)' or ‘J<R’, R is said to be totall, 
reflexive; clearly, a relation R is totally reficxive if and only if Ris reflexive 
and every individual is an R-member. In the arrow diagram of a reflexive 
relation, cvery member-point of the relation has a looped arrow. The samp 
holds for a totally reflexive rclation; in this case, moreover, the diagram 
comprehends all individuals. The diagram of an irreflexive relation 
exhibits no looped arrows. The matrix of a reflexive rclation shows all the 
main diagonal places occupicd; every such place is unoccupied if the relation 
is irrcficxive. 

We say R is connected provided between any two different R-members 
either R or R~! holds, Example: the relation Smaller (among natural 
numbers) is a connected relation since if a and b are different, then either q 
is smaller than 6 or b is smaller thang, The arrow diagram of a connected 
relation shows betwcen any two points an arrow in at least one direction, 
and the matrix of such a relation shows at least one of evcry two converse 
places as occupied. 

31c. Theorems about relations. With thc help of the following definitions 
we introduce into language C symbols for the concepts explained above, 
eg. ‘Sym’ for “symmetric”, ete. Since we have to do here with properties 
of (homogencous two-placc) rclations, our signs ‘Sym’, etc.,—when 
applicd to relations of the first level—arc onc-place predicates of the second 
level of type ((0,0)). 

D31-1. a. Sym(H) = (HEH). 
b. As(H) = (HE ~H-?). 

D31-2. a. Trans(H) = (H?< H). 
b. Intr(H) = (H?< ~H), 

D31-3. a. Ref(H) = (H°CH). 
b. Irr(H) HoJ). 
c. Reflex(H) = (I< H) (totally reflexive), 
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p3t-d. Connex(H) = (x)(y)[mem(H )x.mem(H)y.(x#y) > HxyV Hyx]. 
On the basis of these definitions, many results can be obtained. We give 

some of them here. 

TBI-1. The following sentential formulas are L-true: 

+a. 

+b. 

cs 
+d. 

e. 

+h 

+B 

+h. 

i 

Refl(H) = (x)[mem(H)x > Hxx]. 
Reflex(H) = (x)Hxx. 

Reflex(H) = Refi(H).U(mem(H)). 
Trans.Sym < Refl. 
Every relation that is transitive and symmetric is also 
reflexive. 

As(H) = Irr(H?), 

Asclrr, 
Asymmetric relations are irrcflexivc. 

Trans. As=Trans. Irr. 

Those transitive relations that are asymmetric are also 
irreficxive, and conversely. 

Sym(H) = Sym(H>). 
A relation is symmetric if and only if its converse is sym- 
metric. (A similar statement can be made for each of the 
other concepts introduced in D1 through D8.) 

ASH).(KEH) > As(K). 
Every subrelation of an asymmetric relation is itself asym- 
metric. (Analogous assertions hold for ‘dtr’ and ‘/rr’?, and 
also for the following to be detined below: ‘Antis', ‘Un,’, 
“Uny’, ‘Un, 2°; but the same is not true of the other relational 
properties defined in 31) 

Ine(H2) > Ire), 
Irr(H3) > Irr(H), ete. 
If the sccond power (or any other positive power) of a 
relation is irrcflexive, then the relation itself is irreficxive, 

Trans(H).hr(IL) > Irr(H2), 
Trans(H).lrr(H) > Irr(H3), ete. . 
If a rclation is transitive and irreficxivc, then cvery positive 
power of it is also irreflexive. 

Inconncction with thesc results we give below proofs of (d), (c), (f), (g), 

(j), and (k). 
Proof of (dl). 

the field of R. 
Suppose that (1) R is transitive, (2) R is symmetric, and (3) a belongs to 

Wc must show that Raw. In view of (3), there is an individual, say 5, 
ach that Rab or Rha. From (2), therefore, it must be the casc that Rab and Rba. 
Hence by (1), Raa. 
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Proof of (c). 1. Supposc there arc individuals, say a and 6, such that each bears the 
relation R to the other, viz. Rab and Rha, Thus R is not asymmetric; and further, singe 
Reaa is the case, R? is not irreflexive. — 2. Contrariwise, suppose there is no such pair of 
individuals, Then R is asymmetric, and ulso R? must be irreffexive, since othervige 
there would be an individual (say, a) such that R2aa—which is to say, there would be a 
individual (say, 6) such that Rab and Rba. x 
Proof of ({). Suppose R is not irreflexive. Then there is an individual, say a, such 

that Raa. Thus also R ‘aa; and hence R is not asymmetric. 
Proof of(g). 1, Suppose Ris transitive und asymmetric. ‘Then, by (f), Ris irrcflexiv 

— 2. Suppose Ris transitive und irreficxive; and suppose there were two individuals, say 
@ and b, such that each bears the rclation R to the other, vie. Rab and Rba. In this ea. 
since R is trunsitive it would follow that Raa, contrary to the fact that R is irreflexive 
‘Thus there can be no such pair, and R must be asymmetric, 

Proof of (i). Suppose R is not irreflexive. ‘Then there is an individual, say a, such 
that Raa. In this case also Raa, Raa, ctc. Hence R2, R3, ctc., are not irrcflexive. 

Proofof(k). Suppose Ris transitive and irreflexive, and suppose for some 1 (n>2) that Rris not irreflcxive, Then therc is an individual, say ay, such that Rayay. Hence there must be individuals a2,a3,...an—1 such that Rayaz, Razd3y..yRan 20-1) Ran- 140s, ‘Thus, 
since R is transitive, ay must bear the relation R to a3, t0 a4)... t0 ani and to ay. This 
last is impossible because R is irreficxive. Consequently R" must be irreficxive, 

31d. Linear order: series and simple order. We shall now explicate the 
conccpt of linear order as exempliticd by the natural order (i.e., the order of 
ascending magnitude) of the natural numbers 0, |, 2, etc., or by the natural 
order of the integers, or of the rational numbers, or of the real numbers, 
In cach case of this kind, therc is a class and a relation ordering the clemenis 
of the class. If we wish to specify the ordcring, we need not indicate both 
the class and the relation. To indicate the class alone is obviously not 
sufficient, because the elements of a given class can be ordered in differen, 
ways by different relations. But the specification of the relation is sufficient, 
since the class is uniquely determincd as the field of relation. (The usual 
term “ordercd set” used in set theory for orders of a certain kind is mis- 
leading. Actually scts (or classes, as they are called in logic) are not to be 
classified into ordered and unordered ; instcad, the relations may be classified 
into those representing a linear order and those that do not.) 

The lincar, ascending order of the natural numbers 0, |, 2, etc., may be 
represented cither by the rclation Smaller (for natural numbers) or by the 
relation Smaller-or-Equal (for natural numbers). The former is irreflexive, 
the latter reflexive. In terminology now to be introduced, the former 
relation will be called a “series,” the latter a “simple order.” In most cases 
it does not matter which of the two concepts is uscd. We shall introduce 
both because each of them has certain distinctive advantages and some 
authors therefore prefer one to the other. 

The concept of series is the older one. 1t was introduced in [P.M.] and was previously 
used more frequently. The concept of a simple order may appear to the beginner as 
less simple than that of a serics. But it has the advantage of being slightly more general. 
It can be used in the degenerate case of a lincar order of exactly one member, say 4, by 
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of the relation {(a,a)} (sce 32e below), but a scries, being irrcflexive, cannot have 
txactly one member, We shall see that the concept of simple order is a more suitable 
pasis for the definition of ordinal number (see 38a below), ‘Therefore it is frequently 
preferred recently. 

The two concepts just mentioned will be defined as follows. A relation 
Ris said to be a serial relation or, for short, a series—in symbols ‘Ser(R)’— 
rovided R is irreflexive, transitive, and connected. A rclation R is called 

antisymmetric (‘Antis(R)’) if, for any two distinct members, R and its 
converse cannot both hold; in other words, if x and y must be identical 
whenever both R and its converse hold between x and y. A relation R is 
said to be a partially ordering relation or, for short, a partial order (‘POrd(R)') 
rovided R is reflexive, transitive, and anti-symmetric. A relation R is said 

{o bea simply ordering relation or a simple order (‘SOrd(R)’) provided R is a 
partial order and is connected. 

pais. Ser= In’. Trans. Connex. 
D3l-6. Antis(H) = (H. HCI). 
p31-7. POrd= Refl. Trans. Antis. 
p3l-8. SOrd=POrd. Connex 

Concerning thesc concepts we have the following thcorems. 

731-2. The following sentential formulas are L-true. 
+a. Ser = As.Trans.Connex. (From Tlg.) 

b. Ser(H) = Connex(H).lrr(H?). Irr(H3). 

ce. Ser(H) = Connex(H). Irr(H®). 

d. Ser(//) > ~ l(mem(H)). 

e. Antis(H) > (H2.1 = H.1). 

f. POrd(H) > (H? = H). 

B. SOrd = Refl. Trans. Antis. Connex. 

h. SOrd(H) = SOrd(H '). 

1. SOrd(H) > (mem,(H) = mem,(H)). 
j. SOrd(H). mem(H)x.mem(H)y.Jxy > (Hxy = ~ Hyx). 

k. SOrd(H) . (KCH). Reff(K) . Connex(K)> SOrd(K). 

1. SOrd(H).(x)(y)[Kxy = Fx. Fy. Hxy] > SOrd(K). 

Proof of (b). 1. Suppose R is a series. Then, by DS, R is connected and transitive 
and irrcficxive. In view of TIk, R2 and R3 arc also irreficxive Hence if Ris a series, 
then Ris connected and R? is irrefiexive and R3 is irreficxive. — 2. Conversely, suppose 
Ris connected and R? is irrefiexive and R¥ is irreficxive. Then R is irrcficxive (by T1j) 
and asymmetric (by Tle) It remains to show that R is transitive, i.c. that if Rab and 
Rbc,then Rac Suppose Raband Rbe Since Ris asymmetric, a and ¢ must be different. 
Since R is connected, cither Rac or Rea. Now Rca cannot hold, for other-wise Raa 
would hold (it having been assumed that Rab and Rbc) in contradiction to the irreflexive- 
ness of R3, ‘Thus Rac must hold and R must be transitive. Hence, finally, Ris a series. 

Proof of(c) 1. Suppose Ris aserics. Then R is connected, transitive and irreflexive. 



124 THE EXTENDED LANGUAGE C 

Hence, by Tik, R6 is also irreflexive — 2. Conversely, suppose R is connected and Rs, 
irreflexive. Now Ré is the same as (R2)3 und (RY)2, Since (R2)3 is irreflexive, so also 
R2 (by T1j). Since (R3)? is irreflexive, so also is R} (again by Tlj). Thus, by (b), Risa 
series. 
Proof of (c) 1. Suppose (H.I)xy. Then, since Hxy,x=y. Hence Hx2, but then j 

follows that H2xx Therefore (H?./)xy__ It is now established that (H./)=(H2./)_" 
2. Suppose (H?./)xv. Then, since Ixy,x=y, also, since H2xx, there is some 2 such 
that Hxz.Hzx. Supposing z#.x, then H is not antisymmetric; therefore 2=-. Sine 
z=x and Haz, itis established that Hxx Since /xx is trivial, it follows that (H./)y, 
(recall that x=,). It is now established that (H2./)¢(H.1).— 3, Thus, since (iy © (H2.1) and (H2.2)<(H 1), (H2.1)=(H.1) (by 29-34). 

Proof of (k). Since Refl(K) and Connex(K), it remains only to be shown that AmixKy 
and Tiany(K) to establish that SOrd( K) (by T2g) —1 In view of the fuct that Antis(H) 
(by T2g) and KCH, Amik) must hold (by Tli) --2. To establish that Trans(xy 
assume that Kxy and Kyz Since Trans(H) (by T2y) and Hxy and Hyz, H.xz must hold 
Further, if 2#.x then ~ Hzx must hold (by T2j). ‘Thus ~Kzx must hold. Now singe 
Connex(K), either Kxz or Kzx; hence Kxz__ If, on the other hand, z=, then Kxz mus, 
hold since Refl(K). 
Proof of (I). Assume that the two conditions of the theorem ure fulfilled. -~ 1, Theq 

KH. Hence Amis(K) (by Tli since Amis(H)).—2. If Kay, then since Ref(H) and 
Hxy, Hxx and Hyy must hold. But if Kxy, both Fx and Fy. Hence Fx. Fx. Hay 
and Fy.Fy.Hyy. Thus Kxx and Kyv. Hence Refl(K) --3. Suppose Kxy' and Kyz 
Then since Hxy:and Hyz and Trans(H), Hxz holds. Also, since Kxy and Kyz, Fx and Fr 
Hence Kxz, since Fx.Fz.Hxz. Therefore Trans(K).—- 4. Suppose that mem(K)x and 
mem(K)y and x#s. Then Fx and Fy: must both hold Since KCH, mem(H)x and 
men(H)y. Also since Connex(H), cither Hay or Hyx. Hence either Kxy or Kyz 
Therefore Comex(K).— §. From the results established in (1)-(4) and T2g it follows 
that SOrd(K). 

If H is a simple order and the number of its members is not exactly 1, then 
there is cxactly one corresponding series K having the same members as H, 
viz. H.J. (If H is a simple order with exactly one member, then H.J is the 
empty relation, which is a degenerate case of a series.) If K is a series, then 
there is exactly one corresponding simple order H having the same members 
as K, viz. KV K® (this is the relation formed from K by adding all identity 
pairs of members of XK). E.g. let H be the relation Smaller-or-Equal in one 
of the domains of numbers mentioned at the beginning of 31d, and let K be 
the relation Smaller in the same domain; then K=H.J, and H=KVKO, 
Parts a, b, and c of T3 below state the results just explained. 

131-3. The sentential formula ‘SOrd(H) . ~1(mem(H)) . K=(H.JY L- 
implies each of the following formulas (a) through (c); and 
‘Ser(K) . H=(KV K°) does likewise. 

a. Ser(K). 

b. SOrd(H). 
c. mem(H)=mem(K). 
d. (HIK)CK. 
e. (K|H)CK. 
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Exercises. 1. Can ‘Ser(H)" and ‘mem\(H)=mem{HY both be truce? Can *Ser(H)" 
and ‘meny(H )# mem(H)’ both be true? — 2. Give informal proofs of the following: 

a) T2d (recall that Ser</r); 
b) T2f ( how 1< H2, since Ref(H); show 72 H, since Trans(//)); 

) T2g; 
@) T2h. (show for cach of Refl, Trans, Antis, and Connex that, if H has that property, 

then H~! also has it), 
e) T2i (recall that SOrd Reft); 
f) T2) Ghow Hxr>~ Hyx, since Antis(H); show ~ Hyx> Hay, since Connex(H)). 

3le. One-oneness. It is worth noting that the predicates ‘Un,’, ‘Un2' 
and Um,’ defined in language A (sce D19-1,2,3) can be defined in language 
C without employing individual variables, as follows: 

p39. Un(H) = (H|H< 2). 
3-10. Un(H) = (HH < 2), 
p31. Uny.2=Uny.Ung. 

In avrow-diagram terms: A one-many relation shows at most one arrow 
proceeding into each point; a many-onc relation shows at most one arrow 
proceeding out of cach point; and a one-one relation shows no two different 
arrows sharing cither the same initial point or the same terminal point. In 
malrix terms: A one-many relation shows at most one occupied place in 
each column; a many-one relation shows at most one occupied place in 
each row; and a onc-one relation shows at most onc occupied place in each 
row and cach column. 

+T31-4. The following sentential formulas are L-true: 

a. Un\(H) = Un,(H 4). 
b. Un,(H) = Un\(H-). 
ce. Uny (11) = Um (H-}). 

32, ADDITIONAL LOGICAL PREDICATES, FUNCTORS AND 
CONNECTIVES 

32a. The null class and the universal class. Let us so definc the one-place 
predicate of the first Icvel ‘A,’ that each full sentence thercof, e.g. ‘A\(a)’, 
is L-false. For the definition of ‘A,(x)’ we can cmploy an arbitrary L-false 
sentential formula with the free variable x, e.g. ‘x#x’. Also, we say that 
‘A’ denotes the null class or the empty class. (Note that, in accordance 
with P9 (22a), each type has only onc null class; sce T1b below.) Similarly, 
let us so define the two-place predicate ‘A,’ that each full sentence thereof 
is L-false; A is called the null (two-place) relation. And similarly, ‘A,’ can 
be defined for the null (three-place) relation; etc. 

Again, let us so define the one-place predicate ‘V,’ that every full sentence 
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thereof is L-true. For the definition of ‘V,(x)’ we can employ an arbitrary 
L-true sentential formula, c.g. ‘x=x’. We say that ‘V,’ denotes the universal 
class. Similarly, we so define ‘V,’ that each full sentence thereof is L-trye 
V, is called the (two-placc) universal relation. And similarly we define y’ 
as the threc-place universal relation, ete. a 

D321. a. A(x) = x#¥x. 

b. Aj(x,y) = (x# x). (V4). 
Similarly for ‘A;’, etc. 

D32-2.. a. Vi(x) = (x=x). 
b. Vi(xy) = (x=x).(y=y). 

Similarly for ‘V;’, ctc. 

32-1, The following sentential formulas arc L-truc (as arc analogs 
phrased with higher indiccs, c.g. ‘A,’, etc.): 

a. ~3(A)). 
+b. ~3(F) 

ec, U(V;). 

d. UF) = (F=Vj,). (From (c), T29-3b.) 

+e ACF. 
The empty class is contained in every class. 

+f. FOV,. 
Every class is contained in the universal class. 

g =~. 
h. A. belongs to the following classes: Sym, Trans, Reff (but not 

to Reflex), Irr, Connex, Ser, Antis, POrd, SOrd, Un,, Un, 
Um,,2. 

(F=A,). (From (a), T29-3c.) 

Exercises. 1. Give informal proofs of the following: a) *~ Reflex(A2)'; b) ‘Refi(A2)'; 
¢) ‘SOrd(A2)"; d) *Un£A2)’. 

32b. Union class and intersection class. If M is a class of classes, we 
designate the class of all individuals that belong to at Icast onc of the element 
classes of M as the union class or class-sum of M; this union class is symbol- 
ized by ‘sm1,(M)’, where ‘sm,’ is a functor. Again, if M is a-class of two- 
place relations, we designate that relation which holds for a pair provided 
at least one of the elemcnt relations of M holds for this pair as the union 
relation of M, and denote it by ‘sm,(M)’. Similarly, the functor ‘sm,’ is 
defined for a class of three-place relations, ctc. 

If M is a class of classes, we call the class of those individuals that belong 
to every element class of M the intersection class or class-product of M; 
symbol: ‘pr;(M)’. The functor ‘pr,’ is similarly defined for a class of two- 
place relations, the functor ‘pr,’ for a class of three-place relations, etc. 
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32-3. a. sm(N)x = (3F)(N(F). Fx). 
b. sm(N)xy = (3H)(M(H). Hxy). 

Similarly for ‘sm,’, ctc. 

32-4. a. pr;\(N)x = (F)(N(F)> Fx). 

b. pra(N)xy = (H)(N(H)> Hxy). 
Similarly for ‘pr,’, etc. 

The class of all the subclasses of a given class Q we denote by ‘sub,(Q)’; 
the class of all the subrclations of a given (two-place) relation S by ‘sub,(S)’; 

etc. 

p32-5. a. sub,(F\(G) = (GCF). 
b. sub,(H)(K) = (KE1/). 

Similarly for ‘sub,’, cte. 

32c. Connections between relations and classes. The class of all those 
individuals that bear the rclation R to at least onc clement of Q we designate 
by ‘RQ’. ‘R**Q" isa one-placc predicate expression; a full sentence of this 
predicate, say ‘(R‘*Q)a" would be read “‘a bears the relation R to an element 
of Q”. The cxpression ‘R**Q” itself can be read: “‘the R’s of the Q's” 

If a, 5, c, ... are elements of Q and ‘k’ is a functor, we designate by ‘k‘*Q” 
the class comprising the individuals k(a), k(h), k(c), ctc. (Instead of the 
constant ‘k’ the definition will contain a functor variable ‘f”.) 

D32-6. a. (1 “F)x = (3y)( Fy. Hxy). 
b. (fF )x = (3y(FY - (x=f9)). 

Examples. 1. ‘fa*‘ssudl" designates the property Father-of-a-Student ; expressed in the 
plural fashion “the fathers of the students". — 2. ‘sy**Prime’ reads “the (class of the) 

squares of the prime numbers”. 

Given a relation R and a class P, we sometimes consider that subrclation 
of R obtained by confining the field of R to P, i.e. the relation which holds 
between x and y provided R holds between x and y, and both x and y belong 
to P. We designate this new relation by ‘Rin P’ (There are analogous 
notions for relations of higher degree.) 

32-7. (// in F)xy = Hxy. Fx. Fy. 
Examples. 1. If @ is the class of Englishmen, then ‘fa in Q* denotes the relation of 

fatherhood among Englishmen. — 2. ‘Sm in Prime’ denotes the relation Smaller among 
prime numbers. 

The class of all initial members of R, ie. all first-place members of R that 
are not also sccond-placc members of R, we designate by ‘init(R)’. The 
corresponding class of terminal members of R requircs no new functor; it 
can simply be designated by ‘init(R-!)’, since the terminal members of R are 
just the initial members of the converse of R. 
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D32-8. init(H)x = mem\(H)x . ~mem,(H)x. 

32d. Theorems. 

32-2. The following sentential formulas are L-true (as are analogous 
formulas phrased with higher indices: ‘sy’, etc.): 

a, M(F)>(Fesm,(N)). 
b. MF)>(pri(N)¢F). 
c. Ser(i!)> Ser(H in F), 

Every relation which results from confining the ficld of a series 
is again a scries. (Analogous theorems hold for ‘Sym’, ‘As, 
‘Trans’, ‘Inte’, ‘Refl’, ‘Irr’, ‘Connex’, ‘Antis’, ‘POrd’, ‘SOrd’ 
‘Um, ‘Un’, ‘Uny,2’ (see 31).) : 

132-3. In cach of the following sentence-pairs, the two given sentences are 
L-cquivalent (the arbitrary constants ‘P’, ‘M’ and ‘R’ may be 
replaced by arbitrary predicate cxpressions of the same type): 

a. ‘sm\(M)¢P" and (F)[M(F)> (Fe P)]’. 

b. ‘Pepr\(MY and (F)[M(F)>(PCF))’. 

ec. ‘~ 3(init(R)) and ‘mem,(R)Smem,(R)’. 

Exercises. 1. Give informal proofs of the following: a) T2a; b) T2b; <) T2c: d) 
‘Sym(H)>Srm(H in F)', €) “AsH)> AH in FY; £) *Trans(H)> Transit in FY", g) 
Refl(H)> Ref(H_ in F)*; b) *Connex(H)> Connex(H in F), — 2. Give a relation R and 

a class P such that Reflex(R) but ~ Reflex(R in P) —3. Give informal proofs of the 
following. a) T3a; b) T3b; c) T3c; d) ‘pri(N)Ssuq(N)'. 

32e. Enumeration classes. The property of being the individual a, ie, 

the class whose only member is a, is called the unit class of a and designated 
by ‘{a}’. The property of being cither a or 4, i.e. the class whose only 
members ure a und A, is designated by ‘{a,6}’; ‘{a,h,c}’ is defined similarly, 
etc. Writing ‘(a,b)’ for the ordered pair comprising a and / witha first and 
b second, we can also use the enumeration notation ‘{...}' for a relation taken 
as a class of ordered pairs. Thus the two-placc relation whose only pair is 
(a,b) is denoted by ‘{(a,b)}’; *{(a,b),(c,¢)}’ designates the relation whose only 
pairs are (a,b) and (c,d); similarly for ‘{(a;,@2),(b),b2),(¢1,¢2)}’, cte. (Note 
that the class {a,b} is the same as the class {6,a}, whereas the two relations 
{(a,h)} and {(b,a)} arc different (provided a and hb arc not identical).) Con- 
tinuing this process, similar definitions can be made for threc-place relations 
(e.g. ‘{(a,b,c)}’), for four-placc relations, cte. 

D32-9. 

c. bx} = G}VOWVE) 
In a corresponding way, classes with four or more elcments can be defined 
by cnumeration. 
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Following out the pattern of our introductory remarks, we give next: 

32-10. a. {(x,y)}(u.v) = (u=x).(v= y). 
b. {(%)),(Z.0)} = {26.9} V{(zw)}- 

Ina similar way, two-place relations comprising three or more pairs can be 
defincd by cnumeration. 

Continuing, we have 

D321. {(x,y,z)}(u,w) = (u=x)-(0=y)-(2=W). 

Ina similar way, three-place rclations comprising two or more triples can 
be defined. And gencrally, n-place relations comprising a finite number m 
of given "-tuples can be defined by enumeration of these n-tuples. 

732-4. The following scntential formulas are L-true: 

a. {x}x. 

b. (xy}u = (w= x)V(u=y). 
ce. {x,y,z}u = (u=x)V(u=y)V(u=z). 

a. {(x,y),(z,w)}uv = ((u=x) . (v= y))V((u=z) - (v=). 

e. Fx = ({xJCF). 
f Hxy = ({(x%y)}C A). 

At this point it is possible to read the axiom systems given in language 
Cin 44a and 46a of Part Two (Application of symbolic logic) of this book. 

Exercises. 1. Give informal proofs of the following: a) T4a; b) T4b; c) T4d; d) TA; 
) he Ory 

33. The A-operator 

33a. The A-operator. Let ‘MM’ bea one-place predicate of the sccond level, 
ie. designating a property of properties of individuals. Thus e.g. ‘M(P)’ 
might be rendered “‘the first-Icvel property P has the second-level property 
M”. (Fora concrete example, we might think of a cardinal number, e.g. 5; 
then ‘5(P)’ says that P has cardinal number 5. Here, of course, 5 is regarded 
asa property of properties.) If we wish to assert that the property predicated 
of a by the sentence ‘Pa V Qa’ has the property M, we can do so with the 
help of the symbolism just introduced: for since ‘PaV Qa’ can also be 
written ‘(PV Q)a’, the proposition namcd above can be formulated 
‘M(PV Q). [Example: we would read ‘5(PVQ)’ as “the disjunction of 
properties P and Q (or: the union of classes P and Q) has cardinal number 
5”) 
What we have just done in connection with ‘Pa V Qa’ cannot be cxtended 

to more elaborate scntential compounds such as ‘PaV(y)Rya’. The reason 
is that the symbolism available up to this point furnishes no predicate 
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expressions for the properties predicated of an individual by most compound 
sentences about the individuals; e.g. we have no predicate expression foy 
the property predicated of individual a by the sentential compoung 
‘PaV(y)Rya’. The operator sign ‘A’ ne v to be ‘troduced will have the 

particular role of forming a predicate expression for any property ascribed 
to an individual by any sentence in language C. Thus it will appear in what 
follows that the property predicated of individual a by the sentence 
‘PaV(y)Rya’ is to be designated by the predicate expression 
“(Ax)(PxV (y)Rypxy. 

An expression of the form ‘(Ax)(...x. 
A-expression ‘(Ax)(...x...)’ the portion written ‘(Ax)’ is an operator which we 
call the A-operator; and the portion written ‘.... is the operand of Bi 
A-operator. Note thercfore that the ‘x’ is bound in Axx) Tf ax? 
is a scntential formula, then ‘(Ax)(...x...)’ corresponds, say, to the veital 
expression “the property of x au that .. or the verbal expression 
“the class of those x such that ...x...”; and the full expression ‘[(Ax)(...x...)]a’ 
is a sentence asserting the individual a has the property (Ax)(...x... 

The usc of a A-expression, e.g. ‘(Ax)(PxV(y)Ryx)’, would be superfluous 
if its purpose were merely to ascribe the property it designated to some 
individual, say b. For this can be donc simply by the sentence ‘PbV(y)Ryb’, 
and the more complicated formulation ‘{(Ax)(PxV(y)Ryx)]b” can be dis- 
pensed with; both formulations say the samc thing. Therefore our syntactical 
system B contains a primitive sentencc schema (it is P10 in 22a) that enables 
either one of the two sentences just named to be derived from the other; 
which is to say, we can find in B a scntence in the old symbolism (viz. 
“PbhV(y)Ryb’) that is synonymous with the full sentence of the A-expression 
(viz. “[(ax)(PxV(y)Ryx)]6’. However, the old symbolism provides no 
expression that is synonymous with the A-cxpression itself. Hencc the new 
A-expression is very uscful if we wish to ascribe to the property designated 
by this A-expression some property of the second level, for in this case the 
A-expression can scrve as the argument-cxpression of the second-level 
predicate expression. 

The particular illustration A-cxpression that appears above is a one-place 
predicate expression. In a similar way, A-operators with scveral variables 
can be used to construct many-placc predicate expression. E.g. a A-expres- 
sion of the form *(Axy)(...x.. J. ..)’ whose operand *...x...y...’ is a sentential 
formula with frec variables ‘x’ and ‘y’ is to be recognized as a \wo-place 
predicate expression designating that relation which subsists between two 
individuals x and y just in case thcy satisfy the condition formulated in the 
operand. The formulation of A-predicate expressions with more than two 
argument-places and of arbitrary type is carricd out in an analogous 
fashion. A variable must not occur in a A-opcrator more than oncc. 

Whilc of grcat importance thcoretically, A-exprcessions are relatively 
seldom used in language C. The rcason is that in language C other forms of 

’ is called a A-expression. In the 
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expression (notably, functors) arc often available for the construction of 
redicatc expressions. E.g, the property predicated of a by ‘PaV(3))Rya’ 

can be designated ‘PV mem,(R)’, hence in this case the less concisc A-expres- 
sion “(Ax)(PxV (3y)Ryx)' can be dispensed with. Again, it often happens 
that a discussion involves repcatcd reference to a ccrtain property in a 

rticular connection; in this event it may pay to introduce (by definition) a 
simple predicate for the property. Thus, reverting to our last example, we 
can introduce Q, say, by the definition ‘Qx = PxV(3y)Ryx’ and thercafter 

render as ‘M(Q)" the proposition contemplated about this property, Asa 

eneral rulc, A-expressions are of use only when there is no advantage 

either in defining predicatcs for the propertics under consideration, or in 
defining functors which permit the designation of these propertics by 
compound predicate expressions. 

4-functor expressions. Up to now we have dcalt only with A-expressions 

which are predicate expressions, ie. A-expressions whosc operands arc 
sentential formulas. We also wish to admit A-expressions whose opcrands 

are expressions of arbitrary typc in the type system. Here, as before, the 
full expression ‘[(Ax)(...x...)]a’ is synonymous with ‘...q...’, i.e, with what 
results from substituting ‘a’ for ‘x’ in the operand. But whereas formerly 

this full cxpression was a sentence, now the full expression is an expression 
of the type system. For this rcason the A-cxpressions now under considcra- 
tion are not predicate expressions, but functor expressions. (It should be 

noted that the primitive sentence schema P10 of 22a still serves for the 
transformation of our present A-expressions.) 

Examples. 1. In accordance with the above, *[(Ax)(prod(3,x))Ja’ is synonymous with 
‘prod 3,a)’ and hence means “the triple of a’; thus “(Ax)(prod(3,x))' is a functor expression 
to be read “the triple of" or “the function whose value al x is 3: From this example 
we sec that uny A-functor expression *(Ax)(. .x...)" can be read “the function whose value 
axis. x" —2. The one-pluce predicate expression *(Ax)[(3»)Rxy')' is read “the class 
of those x such that there is somet:.ing y' to which x bears the relation R"; hence (in view 
of D181, and the fact that *[(Ax)[(3y)Rxy'JJa’ means the same as °(3)’)Ray", ie, ‘mevny( R)a’) 
itis clear that \(Ax)[(3»)Rxy]' is synonymous with ‘menn(R)'. Now suppose we let the 
Jexpression of this example be the operand of unother A-cxpression, viz. ‘(AH )[(Ax) 
(@y)Hey])!’ This new Aexpression is a functor expression; it is read “the function 
whose value at H is the class of those x which bear the relation H to something" or “the 
function whose valuc at is the class of first members of H""; and hence it is synonymous 
with ‘mem;’. This lust can also be seen as follows: *((AH)[Qa)[(ay) 4 5]))(RY is synony- 
mous with ‘(Ax)[(3x)Rxy]', which in turn is synonymous with ‘mem,(R)'; thus ‘(AH) 
(Q0[(3.1)Ax) J] is synonymous with ‘mem’. 

According to an earlier rule (9a, (4)), those brackets can he omilled which 
immediately enclose an expression consisting of an operator and the 
operand belonging thereto. This rule permits us to omit e.g. all the square 
brackets from the illustrative expressions given above; thus ‘(AH)(Ax) 
(yX Hxy)(RY’ can be written in place of (AH) [Ax)[(ay(Haxy)]]](RY. (It 
should be observed that Rule 5 of 9a docs not apply to A-ex pressions.) 
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33b. Rule for the A-operator. What is said below is a consequence of 
our explanations of the meaning of A-cxpressions. Suppose that jm, 
mediately after a A-expression whose A-operator contains » variables there 
follows an argument-cxpression; then the whole complex is a full €XPression 
provided this argument-exprcssion is n-place and the member in the kth 
place thercof (k = .,,...,#) is of the same type as the kth variable in the re 
operator. (The argument-cxpression referred to above is called the 
argument-expression belonging to the A-expression, or the argument-expression 
belonging to the d-operator; the A-expression itself can, of course, be either 
a predicate expression or a functor expression.) If a A-expression and its 
argumcnt-cxpression together have this character, i.e. if the whole complex 
is a full expression, then the A-opcrator can be eliminated with the help of 
the A-rule given below. [So far as the syntactical system B is concerne, 
this A-rule follows from the primitive schcma P10 of 22a. So far as the 
seraantical system B is concerned, the A-rule always produces from a given, 
expression a second that is L-interchangeable with the first; this follows 
from the fact that sentcnces of the form P10 are L-true on the basis of the 
evaluation rules given in 25a.) 

The A-rule. A full expression of the form 

[AD Page» Peg) (M1) Mom Mangree9 Lng)» 
where WY; is the operand of the A-opcrator, may be transformed into the 
expression %, which is obtained from &; by substituting in the latter Yn 
for O44, Um, fOr v4.5, and U,,, for v,,. 

The transformation referred to in this A-rule can be effected whether the 
displayed A-expression is an independent sentence or a part of another 
sentence. In view of the rule, a A-operator can always be eliminated if 
there is an argument-expression belonging to it. If an expression consists 
of a single operand preceded by scveral A-opcrators and followed by 
several argument-expressions (each of thesc last is bracketed by itself; their 
number does not excecd the number of A-opcrators), the first argument- 

expression belongs to the first A-operator and can be eliminated with it; 
the second argument-expression belongs to the second A-operator, and can 
be eliminated with it; and so on. 

Example. By two applications of the A-rule (the second application involving two 
variables), the expression ‘(ux:)(AFix3)(AH a) eX tos F20X3euH 4 Mas Pas)’ can be 

Remarks. The use of A-expressions requires careful attention to brackets. According 
to our carlicr stipulation (see the nd of 33a), it is permissible to write ‘(Ax)(Px)a’ instead 
of ‘[(Ax)(Px)|(@). On the other hand, brackets enclosing the operand of a A-operator 
(e.g. those around ‘Px* in the expression just given) are generally not to be omitted; they 
may be omitted only if some other rule permits, Thus *(Ax)(...x...)(a)’ is to be regarded 
as an abbreviation for *((Ax)(...x...)(@)’, but not for “(Ax)[(...x...)(@)]’.. In other words: a 
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redicate expression or functor expression which stands between a A-operator and an 
slqument-expression belongs to the A-operator 

‘again, the difference between ‘(xy)’ and *(Ax)(Ar)" should be noticed, Suppose 
: isa sentential formula, Then “(At 1 Ken is a predicute expression, and 

\(a,h)' can be transformed by the A-rule into *...a..b. ', On the other 
and, in view of our agreement about omission of brackets, “(Ax)(Ay% is an 
Mpbreviution for *(Ax){C4y », JJ’ and hence is u functor expression; pression 
stitise.g. (ANIA). x. 3° D(a)’, which by the Arule may be transformed into Ay), t 
ry and so recognized as a predicate expression, Using this predicate expression, let 

form the full sentence “(Ax(AIN(. .x:..3" la\(6)", This sentence is an abbreviation for 
aNIAIC > y.-I}Jla\(b)’, which by two successive applications of the A-rule transforms 
first into “(s) )(6)' und then into * sdb... 
The ‘predicate expressions are entirely analogous to the class expressions of [P.M ]. 

Here, however, they are genuine predicate expressions, and urc used exactly like predi- 
gates. Thus €g ‘Qa)(Px)" and ‘P* ate interchangeable in any context whatever. Con- 
Sening the line of development which led to this identification of predicate expressions 

class expressions, sce [Syntax] §37, §38 This development was initiated by Russell 
isee (PM. Introduction to vol 1, 2nd ed., and Chap V1)-—Chureh was the first to use 
the woperator for functor expressions; he has given the A-operator a central role in his 
system (“The caleuli of lumbdu-conversion", Annals of Math Studies, No 6, Princeton, 
1941). 

With the background provided by the present section 33b, we can state 
the following theorem, 

733-1. The following sentential formulas are L-true: 

+a. (Ax)(Fx)=F, 

be (Ax)(Fx)(y) 
©. (Ax,y)(Hxy)=H. 
d. (Ax,y)(Hay)(uv) = Hue. 

Exercises. 1. Give an informal proof of Tla based on T29-3a. — 2. Give an informal 
f of the following: *(2)(w)[CAxAr\ Rar)(zXr Ax, y)( Rey (z2,1")]', — 3. Decide 

whether the following is u sentence, restore all parentheses and specify the type of the 
expressions on cuch side of the *=": Ox) Ruy) = (Ax Ra0)", 

Fy. 

33c, Definitions with the help of A-expressions. Suppose a; is a predicate 
or functor of arbitrary type, and supposc that a definition of a; can be 
formulated in language C. Then there is always a A-expression %; which 
comprises only previous signs and which is synonymous with a;. Hence, if 
desired, a,=%; can serve as a definition of a;. Such a definition is an 
aplicit definition in the strict sense, viz. its definiendum consists precisely 
the sign being defined. If a, is an n-place predicate, a definition of it in 
the present manner would appear in the form a;=(Av,,,.-.,0;,)(G,); in 
tontrast to the usual form a,(v,,,...,0;,) = S,- Similarly, when a, is a functor 

is definition can now have the form 4a; = (AY), (AW;,)..(AMG, (Sx) rather 

‘dan the form a,(%,,(%,,).--(M,) = S;, (here the %,,, W;,,..,U,, are argument 
\pressions consisting of variables). Note that slight notational revisions 
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might be required in some definitions to bring them into this form. Defin;. 
tions in which the predicate or functor does not precede its arguments Mus 
be revised to that form, c.g. D28-3: (F< G) = U(F>G)' must first be Teviseq 
to D28-3*: ‘<(F,G) = U(F> Gy, whereupon D28-3* can be replaced by 
*c = (AF,G)(U(F>G))'; D32-7: (H in F)xy = Hxy. Fx. Fy’ must first be 
revised to D32-7*: ‘in(#H,F)xy = Hxy.Fx.Fy', whercupon D32-7* can be 
replaced by: ‘in = (AH,F)(Ax,y)(I/xy.Fx.Fy)'. (See exercise 2.) 

This A-style of definition can be used in defining any descriptive Predicate 
or functor whatever, once an adequate stock of primitive descriptive signs 
is available. The same remark applies to all the logical predicates and 
functors previously defined in language A (in 17, 18, 19), and to those 
additional oncs of this chapter which are defined in language C, A few 
examples will illustrate this possibility. In place of D17-2b, we could use: 
2m = (AF 3X3 Fx- Fy. (X#Y))'s for D181: ‘men =(AH)(Ax\gy) 
(Uxy)'; for D19-1:*Uing= XH Y(x)(9Xu)(_..)' for D19-4:'Corr, = (AK,H,H,) 
(..)') for D29-1: T= (Ax,y)(x=y)*; for D311: ‘Sym=(AH)( HE H-1)': for 
D32-1a: ‘A, =(Ax)(x# x)’; for D32-3a: ‘smn = MYQNGEAME). Fy 
D32-Sa: ‘sub, =(AF(AGK(GCF)'; for D32-8: ‘init=(AH)(AX\(...)° for 
D34-2: ‘str, = (AH, )(AH2)(15,(Ha,//,))'; for D36-1: ‘Her= (AFH) I(x) 
(Fx. Hxy> Fy)]'; and for D37-3: ‘sum = (AN, ,N2)(AF (3G 1)(3G2)(...)'. 

It should be observed, finally, that definitions phrased in the A-style have 
the same consequences as the morc usual open definitional formulas 
Suppose c.g. that the sentence S; : ‘ment, =(AH)(Ax)[(3 y)(Hxy)]’ is taken as 
defining ‘mem,’ in the syntactical system B, On the basis of ©; we can, 
with the help of the interchangeability theorem (T24-7), replace the second 
occurrence of ‘ment’ in the provable sentence ‘(#)(x)[mem(H)(x) = 
mem(H\x)]" by the A-cxpression given in ©, From the resulting 
sentence ‘(//)(x)[memy(//)(x) = (AH)(Ax)[(3y)(Hxy)](H)(x)]’ we obtain 
“(H)(x) [men(H (x) = (3y)(Hxy)]’ by two successive applications of the 
A-rule and the trivial substitution of ‘H* for ‘H’ and ‘x’ for ‘x’. The 
sentence standing within the square brackets of this last result is to be 
recognized as the open definitional formula given for ‘ment,’ in language A 
(see D18-1). Hence we necessarily obtain from the definitional sentence &, 
in B the same results as we do from the open definitional formula D18-1 
in A. 

Exercises. 1. Replace the following with A-style definitions’ a) D29-2cy b) D31-3a; 
c) D31-4; d) D32-2a. 2. For cach of the following, decide whether it can be replaced 
by A-style definitions (recall that in a A-style definition the definiendum consists precisely 
of the sign being defined), if it cannot be so replaced, give a notational revision thal 
might be made in the definiendum which would ullow the replacement, and give the 
replacement for the revised definition: a) D28-2; b) D30-1; c) D32-4a; d) D32-6a; ¢) 
D32-9a. 

33d. The R’s of b. The property of bearing the relation R to 4, i.e. the 
class comprising the R’s of b, can be designated by the predicate expression 
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sny(Rxb)y formed with the help of the A-operator. Let us introduce for 
this predicate expression the shorter form ‘R(-,6)’. Similarly, let us write 
‘R(a,-)’ as short for *(Ay)( Ray)’, the class of those individuals to which @ 

pears the relation R. E.g. ‘Gr(-,3)' denotes the class of all numbers greater 

than 3, while ‘Gr(3,-)" denotes the class of all numbers smaller than 3. 
Our use of the dash ‘~’ will for the most part be confined to the two 

sorts of cascs just described; see c.g. T2 below. For the sake of theoretical 
completeness, howcver, we wish to specify here a gencral rule governing the 
use of the dash. 

The dash is to occur only in an argument-cxpression belonging to a 
predicate expression; (an argument expression may contain several 
dashes. Suppose %; is an n-place argument-expression and 9%, is an 
neplace predicate expression, and suppose that p of the argument-places 
of , (where 1<p<n- 1) are filled by dashes; then %,(%,) is taken to be 
synonymous with—and hence, in any context, interchangeable with—the 
Aexpression “(Ad,,Vgyr--%,)[M(,)]", where Y;’ is obtained from %, by 
replacing each successive dash in 9; by the corresponding variable in the 
A-operator (viz., the first dash is replaced by v,,;...; the last, or pth, dash 

is replaced by De) 

Of course, the A-expression given above can be a predicate expression only 
when %,(9%;") is a sentential formula, i.e. when the variables that fill the 
argument-places in question are of thc types appropriate to %;. Beyond 
this, the variables in the A-operator can be arbitrary, provided only that they 
do not already occur in Y(,(Y;). 

The remarks above are illustrated by the following cxamples concerning the use of two 
dashes in a three-place argument-expressior +¢)" is synonmous with *(ux,1)( 7x0)"; 
‘TE e,-)' is synonymous with *(Ax,s(Txer)"; ‘T(e-y-)' is synonymous with “(AxgTexy)', 
on the other hand, “(Ax,y(7yx¢)' cannot be transformed into a full expression of 7" with 
dashes 

We are now ablc to state: 

133-2. The following sentential formulas arc L-true: 

ta. H(-,y)=(x)(Hxy). 
b. (4(-,y))(x) = Hxy. 

te. H(x,-)=(Ay)(Hxy). 
d. (H(x,-))(y) = Hxy. 

Exercises. For cach of the following sentences, give (u) a translation in terms of *A’, 
and (b) a translation in terms of * *, — J. “There are four primes which are greuter than 
10 and less than 20" (use the form “4(, )’, with ‘Gr*) — 2. “a is the mother of five child- 
ren" (use “S( )') —3. “a hus as many brothers as 4" (recall D19-5, and usc *fs\'), — 
4. “The primes greater than 2 are odd”, —5. “The squares greater than 100 have 
property P™ 
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At this point it is possible to read three more systems in language C given 
in Part Two (Application of symbolic logic), viz. that of 43a, of 47, and of 
Sla. 

34, EQUIVALENCE CLASSES, STRUCTURES, 
CARDINAL NUMBERS 

34a, Equivalence relations and equivalence classes, If a relation R js 

symmetric and transitive, it is said to be an equivalence relation. Note that 
by T3l-Id, an cquivalence relation is always reflexive. (One instance of 
this kind of relation is the logical relation called “material equivalence” and 

symbolized ; another instance is the scmantic relation of L-cquivalence,) 
We shall not introduce any special symbol for the concept of an equivalence 
relation, 

If Ris an equivalence relation, the field of R may be divided into mutually 
exclusive classes that satisfy the two following conditions: (1) R holds for 
each pair of individuals in any one of these classes; and (2) if an individual 
in one of thesc classes bears the relation R to another individual, then this 
second individual belongs to the same class as the first individual. This 
general fact may be extablished as follows. First, consider (1). Let @ be 
an arbitrary R-membcr, and let P be the class of all individuals to which 
bears the relation R (according to 33c, this class is also designated by 
‘R(a,-)’). Suppose, now, that 4 and c belong to P, i.e. that Rab and Rac; 
then it must be the case that Rha and Rch (since R is symmetric), that Rbc 
and Rcb (since R is transitive), and further that cach of Raa, Rbb, and Rec 
holds (since R is reflexive); hence, in view of all these results, R holds for 
every pair in P and condition (1) is satisfied. Next, consider (2). Let a and 
P be as above, and suppose that b belongs to P, i.c. that Rab holds; if, now, 
Rbd also holds, then so must Rad (since R is transitive); thus d too belongs 
to P, and condition (2) is satisfied. 

That the class P satisfies conditions (1) and (2) above can be formulated 
symbolically as follows: ‘(x)(y)(Px.Py > Rxy).(x)(y)(Px. Rxy > Py)’, 
A still more concise formulation thereof (x)(y(Px > (Py= Rx; 
Classes that satisfy these conditions we call equivalence classes with respect 
to R: 

D341. equ(H)=(AF)[(xXy)(Fx > (Fy=Hxy))]- 

Note that ‘equ’ is a functor; that ‘egu(R)’ denotes the class of all equivalence 
classes with respect to R; and that the sentence ‘egu(R)(P)’ reads ‘‘P is an 
equivalence class with respect to R”. Our definition D1 is quite general in 
that it specifies the functor ‘equ’ with respect to any (two-place, homogeneous) 
relation. However, the usual practice is to apply this concept only to 
equivalence relations. It should also be observed that, by D1, the empty 
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class is an equivalence class (cf. Td below); little use is made of this in 
actice (compare, however, our remarks in connection with T37-5 below 

about null cardinals). The discussion which now follows concerns non- 
empty equivalence classes. 

Suppose R is a relation which expresses likeness (or equality, or agree- 

ment) in some particular respect, e.g.color. Then obviously R isan equival- 

ence relation; the equivalence classes with respect to R are the maximal 

classes of individuals having the same color; and each equivalence class 
corresponds to a particular color. This approach presupposes the separate 

colors as primitive concepts. If, however, the relation Having-the-Same- 
Color is taken as a primitive concept, then the several colors can be defined 
as the equivalence classes of that relation. Our verbal explanation of ‘equ’ 
is phrased in terms of classes only because that phrasing is the customary 

one; 4 phrasing in terms of properties is equally possible. E.g. we could 
use the term “equivalence property’’: each of two individuals has a certain 
one of the equivalence properties with respect to an equivalence relation R 
ifand only if each bears the relation R to the other. In the color illustration 
just given, the separate colors are the equivalence properties relative to 
Zolor-likeness, ic, each separate color is characterized by the fact that 
two individuals have the same color if and only if they are alike in 

color. 
Suppose R is an arbitrary equivalence relation. It is of interest to 

consider the equivalence classes with respect to R without regard to any 
prior interpretation of R as likeness in any particular respect. Here the case 
is that the equivalence classes with respect to R represent certain properties 
which permit a subsequent interpretation of R as a relation of agreement in 
one of these properties, E.g. let R be the relation of parallelism between the 
lines of a fixed plane. Then R is an equivalence relation. Now define the 
equivalence classcs with respect to R, i.e. the maximal classes of lines parallel 
to one another. These classes represent properties of lines which might be 
called “directions”; these properties are characterized by the fact that two 
lines have the same direction if and only if they are parallel. Thus it 
appears that parallelism is identical with sameness of direction. What is to 
be noted here, however, is that we did nor begin with the concept of direction 
and define parallelism in terms of it as sameness of direction; rather, we 
began with the concept of parallelism and procceded to a definition of 
directions as equivalence classes with respect to parallelism. Such a 
definition of a family of properties by way of the equivalence classes of an 
equivalence relation is often called definition by abstraction (see Russell 
[Principles] 166; Frege [Grundlagen] 73ff.; H. Scholz and H. Schweitzer, 
Die sogenannten Definitionen durch Abstraktion, Forschungen zur Logistik, 
No. 3, 1935). 
The discussion that has just been concluded allows us to state the follow- 

ing theorems. 
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734-1, The following sentential formulas are L-true: 

a, Trans(H).Sym(H1) > (x)(y)[Hxy = (3F )(equ(H)(F). Fx. Fy)], 
A given equivalence relation holds between two individuals j 
and only if these individuals belong to the same equivalence Class, 

b. Trans(H).Sym(H) > (x)(equ(H (A(x). 
If R is an equivalence relation, then R(-,a) is an equivalence 
class. [Note two things here: R(-,a) and R(q,--) are the same: 
and in view of (d) below it is not necessary to require that q bea 
member of R,] 

Trans(H).Sym(H).equ(H )(F).equ(H)(G).(F#G) > 0(F.G), 
Two different equivalence classes with respect to an equivalence 
relation have no individual in common. 

equ(H)(A,). 
The cmpty class is an cquivalence class with respect to any 
relation, 

c 

d. 

Exercises, — 1, Give informal proofs of the following: a) Tla; b) Tle; c) ‘Trans(H), 
Sym(H) > smy(equ(H))=mem(H). 

34b. Structures. Earlier, in D19-5, we defined the concept of isomor- 
phism; our symbolism was ‘/s,’, wherc for ‘a’ one of the numerals ‘|’, ‘2’, 
etc., must be put, From that discussion it is seen that two n-place relations 
are isomorphic provided there is a 2-place rclation which serves as a 
correlator between the two. If Risa corrclator between S; and S2, then the 
converse of R is a correlator between S, and S,; hence isomorphism is a 
symmetric relation. Again, if R, is a corrclator between S; and S, and R, 
is a correlator betwcen S, and S;, then R,|R2 is a corrclator between S, and 
53; hence isomorphism is a transitive relation. In view of these results, 
isomorphism is an equivalence relation; moreover, it is totally reflexive 
since identity is a correlator between S; and Sj. 

+T34-2, The following sentences are L-true: 

a. Sym(Is,). 
b. Trans(Is,.). 
c. Reffex(Is,). 

If two relations are isomorphic, we say they have the same structure. 
Hence the various relational structures can be rcpresentcd as the equivalence 
classes (or equivalence properties) with respect to isomorphism. Following 
our previous considerations, the structure of a relation is thus the class of 
relations isomorphic with it (or: the property of being isomorphic with it), 
Employing a functor ‘s/r,’, we agree to write ‘str,(7)’ for “the Structure of 
the (n-place) relation T”’: 
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p34-2. str,(H) = Is,(-.H). 

That ™ is a structure of 1-place relations or—as we shall also say—an 
»place structure, is symbolized by ‘Sir,(M)’; ‘Str,’ is a predicate of the 

third level. 

34-3. Str, = equ(ls,) 

Definitions D2 and D3 are actually definitional schemes, just as D19-5 
was, By supplanting ‘’ with such numerals as ‘1’, ‘2’, ctc., we obtain from 
D2 explicit definitions of the functors ‘s1r,’, ‘str;’, etc ; and from D3 
explicit definitions of the predicates ‘S,’, ‘Sir’, ctc, The same remark 
applics to the formulas given in the thcorems bclow; numerals ‘1’, ‘2’, etc., 
are to be inserted for ‘n’, 

34-3. The following scntential formulas are L-true: 

a. str H)(K) = Is,( KE) 
A relation has the structure of another relation if and only if 
the first relation is isomorphic with the second 

Str,(str,(H)). 
For each n-place relation H it is the casc that s1r,(H), i.c, the 
structure of H, is an element of the class Sir,, or an #t-place 
structure, 

+0, Sir(N) = (H)(K)[M(H) > (N(K) = Is,(H,K))]. 
(This result follows from D1.) 

a. Sir,(N) > (H)(K)[N(H).M(K) > Is,(H,K)]. 
(This result follows from (c).) 

e. Sir,(N) > (H)(K)[N(H).1s,(H,K) > N(K)]. 
(This result also follows from (c), Note that (d) and (e) 
correspond to conditions (1) and (2) in 34a.) 

f. Str,(A,)- 
The empty class of »-place relations is an n-place structure, 
(From Tld.) 

Exercises. 1. Domain of individuals, the straight lines of a given plane Using ‘Pa’ 
for “Parallel”, define a predicate * Dir * (analogous to *S ;*) where * Di (FY means “ 
direction" Also define a functor “dit” (analogous to *yi,") where “dit(v)’ means “the 
direction of .x" (see remark in 34a) -- 2, Domain of individuals; the points of a given 
plane Using *Egcla’ for “Equidistant from the point a", give an informal proof to show 
that Eycla is an equivalence relation Define a predicate *Cia" where 'Cira(F)" means 
“F is an cquivalence class with respect to Egda™, Also define a functor ‘cia’ where 
‘cha(x)' meuns “the equivalence class of x with respeci to Fycla” Using the language of 
geometry, what other readings could be given to *Ciha(F)* and ‘ciru(x)*? 

b. 

34c. Cardinal numbers. As we have already mentioned in 19, one-place 
isomorphism of classes (or properties) mcans that thesc classes are equi- 
numcrous, Hence the one-place structures arc the cardinal numbers, 
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Suppose e.g, there are cxactly three individuals having property P; as we 
Icarned in 17c, this fact can be expressed by the sentence ‘3(P)", it follows 
from the definition of ‘3’ in D1I7-3 that a property Q has the second-leve| 
property 3 if and only if Q is isomorphic with P, Thus by T3a we have 
‘3=str,(P)’, and hence ‘S1r,(3)’; which is to say, 3 is the cardinal number of 
P and so 3 is a cardinal number, Similar remarks hold for every other 
second-level predicate defined in accordance with D17-3, Consequently 
the results stated in the theorem below are valid. 

134-4, Suppose ‘M’ is any onc of the second-level predicates ‘0’, ‘1’, ‘2", 
etc,, defined according to D17-3, Then the following sententia} 
formulas are L-true: 

a. M(F).M(G) > Is\(F,G). 
b, M(F)./s,(F,G) > M(G). 
ce. M(F) > (M(G) = Is,(F,G)). (From (a),(b).) 
d. equ(Is,)(M). (From (c) and D1.) 

+e, Sir,(M). (From (d) and D3.) 
f. M(F)> [M=Is\(-,F)]. (From (¢).) 
g. M(F)> [M=sir,(F)]. (From (f) and D2.) 

Earlier in this book (in 17c) we called the second-level properties 0,1,2, 
etc., cardinal numbers, But only here, after defining the gencral concept of 

cardinal number (‘S1;’), have we been able to show that 0,1,2, etc,, actually 
are cardinal numbers (T4c), 

The empty class, and only the empty class, has the cardinal number 0. 
(see below T5b,c,d), Thcreforc 0 itself is not cmpty (cf. TSe). The contrast 
between TSe below and T32-la thus signalizes an important difference 
between the (first-level) empty class A, and the (second-level) non-empty 
class 0; this difference is particularly to be noted since in set theory un- 
fortunately the empty class is often designatcd by ‘0’, 

734-5, The following sentential formulas are L-true: 

+a, OF) = ~3(F). 

+b. 0(A)). 
c. O(F) F=A\). 
d. 0={A,}. (From (c).) 

e. 3(0). (From (b).) 

f. 1(F) = (3x)0)(Fy = (y=x)). 
g. 1(F) = (3x)(F={x}) 
h, 2(F) = (3x)(3»)[Jxv.(F={x,9})]- 
i. 3(F) = (3x)(39)(32)[Vsxyz-(F={x%,7,2})]- 
je 16d. 
k, 2{x,)} = Jxy. 
L 3{x,y,2z} = J3xyz. 
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Later we shall encounter examples of two-place structures: ‘Prog’ 
(D37-1), ‘700° ete., ‘ContSergn’ etc., and *ContOrdgo’ etc. (38). 

Frege was the first to indicate clearly that cardinal numbers ure to be attributed to 
classes (or propertics) rather than individuals, He constructed definitions for the 

separate cardinals, and for the general conecpt of cardinal number, with which our 
definitions (in 17e, and D3 for 'Sir;") in essence agree (Frege [Grundlagen] 79 f , (Grund- 
gesetze] vol. I, 57) In 1901, independently of Frege, Russell consti ucted similar defini- 
tions und used them in establishing the foundations of arithmetic, Both Frege and 
Russell considered it necessary to usc different forms of expression for classcs and for 
properties, and both defined the cardinal numbers us classes of classes, According to 
this view, the cardinal number 3 c.g, is the class of all triples of individuals Such a con- 
ception Understandably provoked some adverse criticism, especially since classes were 
usually considered us totalities; and admittedly the totality of triples of, say, all physical 
things in the world is a vague and cxtravagunt affair. (Criticisms of this kind may be 
found cg. in Hausdorff (Grundzuge] 46 and J. Konig [Logik] 226, note, for further dis- 
cussion, See Fracnkel [Einleitung] 57{T) If, however, a class expression is regarded as 
an expression which facilitates the making of statements about that which is common to 
the elements of the class, all semblance of paradox vanishes from the Frege-Russell 
definitions (cf, Carnap [Aufbau] 54f,), And if we go on, as we did above, to introduce 
cardinal numbers as properties of properties, thus cg °3" us a predicate designating the 
property of being 4 triple, the carlicr objections are entirely vacated and so ure the 
criticisms which Wittgenstein and Waismann have leveled against the Frege-Russcll 
definitions (cf Waismann (Math, Thought] §9B). 

Exercises. 1. Give informal proofs of the following, substituting ‘2' for *M" in a) 

through d); a) T4a; b) T4b; c) T4e, d) T4g, c) TSb, f) TSe, g) TSf; h) TSk. 

34d, Structural properties, If R is a symmctric relation, it is easy to 
show that every relation having the same structure as R is also symmetric, 
A symbolic phrasing of this statement runs as follows: ‘(H,)(H2)[S)m(H}). 
Is,(H;,H2) > Sym(H,)]’. (Later, in 36a, we will say instcad: “Symmetry 
js an hereditary property with respect to isomorphism”; and write: 
‘Her(Sym,/s2)’.) Since the propeity of being symmetric thus depends only 
on the structure of the relation, let us call it a seructural property and write 
‘Struct,(Sym)’. In gencral we say a property of n-placc rclations is an 
(n-placc) structural property provided it depends simply on the structure, i.e. 
provided it is preserved under isomorphism. 

D344, Struct,(N) = (H,)(H2)[N(H)-15,(Hi,2) > N(H2)).- 
134-6. The following scntenccs are L-true: 

+a, Structo(Sym). 
The same holds for the other predicates defined in 31: 
‘Trans’, ‘Intr’, ‘Refl’, ‘Irr’, ‘Reflex’, ‘Connex’, ‘Ser’, ‘Antis’, 
*POrd’, ‘SOrd’, *Uny', *Uny’, *Uny,2'. 

b. Str,< Struct, (From 134-3e.) 
ec, Struct,(M) > Struct,(~M). 
d, Srruct,(M).Struct,(N) > Struct,(MV N). 
e. Siruct,(M), Struct,(N) > Struct,(M.N). 
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We Icarn from T6b that structures are also structural properties, Indeeg 
they are the strongest structural propcrtics, in the following sensc: Suppose 
S; is a sentence that attributes a definite structure to a given n-place 
relation, and suppose ©; is a sentence that attributes to the samc relation 
some arbitrary structural property; then S, L-implies either S, or ~& 
Which is to say, when a relation is assigned a structure, the relation is fully 
spccificd so far as its structural properties are concerned. It is to be noted, 
however, that most structural properties—including thosc named in Téa— 
arc not structures since they do not satisfy T34-3d, 

Exercises. 1, Give informal proofs of Téc, Téd, and T6e — 2, Give informal proofs 

of the following parts of T6a (on the basis of other parts of T6a and T6c)* a) ‘Struct2(Ser)" 
b) ‘Structa(POnd)", c) *StructSOrd)’ -- 3, Which of the following expressions designate 
structural propertics”, a) (AH )[(3x)Hxa)’; b) "(AH )[Sym(H). (mem(H) Even)} (domain 
of individuals natural numbers), ¢) (AH )[(aGnAayT 

35. INDIVIDUAL DESCRIPTIONS 

35a. Descriptions. The expressions elucidated in this section are 
treated chicfly because they occur frequently in the system of [P.M.] and in 
certain other systems, In our language C, however, expressions of this kind 
will scldom be used. 

Our task is the explication of phrases such as “the son of Charles Smith”, 
“the book on my desk”, cte Now the sentence “the book on my desk is 
black” says two things (I) that there is exactly one book on my desk, and 
(2) that it is black. If ‘P’ designates the property of being a book on my 
desk and ‘Q” the property of being black, we symbolize “the book on my 

desk” by ‘(rx)(Px)’ and the whole sentence by ‘Q[(1x)(Px)]’. The square 
brackets here may be omitted, in view of rulc (4) in 9a; however, the brackets 
about ‘Px’ must not be omitted. 

Next, observe that from the sentence ©: ‘(x)[Px = (x=a)]’ there 
follows, on the onc hand, ‘(x)[(x=a) > Px]’ and so ‘(@=a) > Pa’ and thus 
‘pa’, while on the other, we have ‘(x)[Px > (x=a)]’ and so ‘(x)[(x#a) > 
~Px]’. Thus 2, says “a has property P and no other individual docs”, ic. 
“a is the only individual having property P” Consequently, component (1) 

in the paragraph above—the part of our original sentence often called the 
uniqueness condition—can be formulated as ‘(3,y)(x)[Px =y)]’; indeed, 
it can be written still more concisely as ‘I(P)’ (which, in view of T34-5f, is 
L-equivalent to the formulation just given). Our entire original scntence 
may thercfore also be written: ‘(3,»)[(x)(Px = (x=y)).Qy]’. The relation 
between this formulation and the previous onc, ‘Q[(1x)(Px)]’, is exploited in 
Dla below. 

An expression of the form *(7x)(...x..-)’ denotes an individual, the denoting 
being not in the fashion of a proper name (e.g. ‘a’, ‘b’ or the like) but with 
the help of a property which attaches to this individual only, Such an 
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expression is called a description (or, an individual description), The 
symbol ‘(1x)’ is an operator; it is called the :-operator (read: “‘iota-opcrator”: 
the‘ is an inverted Greek iota). Because ‘(7x)’ is an operator, x is bound 

at each of its occurrences in the description ‘(x)( ..x...)’. To avoid com- 
jicating unduly the rules governing the usc of descriptions, we shall 

restrict the role of a description to that of an argument-cxpression for a 

predicate expression (but not for a functor cxpression), and to that of a 
member of an identity formula. 
On the basis of the explanations given to datc, we construct the following 

three formal schemata: 

D3s-l. a = (3%)[()(%, = (2) =))).%]- 
Here v; and v, arc two different individual variables, %, is an 
arbitrary sentential formula in which v; has no free occurrences; 
YA, is a full expression of a predicate expression, and is such that 
one of its argument-places is occupied by the description 
(v,)(%,), and finally, &, is like Y, except that the former has v, 
in the place where the latter has the description just cited, 

[QQ = 2%; (uw) [2 = (0, =%)]: 
Here v, is an individual variable; 1, is a sentential formula; 
and %; is an individual expression (but not a description) in 
which v, has no free occurrences, 

c Feeonee = (mG) = Gr )OI(G = (0) = Py) (0, X= 
(Vy = Vy 
Here vy, 0, and v, are individual variables, with v,, different from 
v; and v,; and %; and %, are both sentcntial formulas having no 
free occurrences of ¥,,. 

b. 

These threc formulas do not have the form uscd elsewhere for definitions 
in language C. Nevertheless, they serve the same purpose as the typical 
definition, viz. to eliminate descriptions from arbitrary contexts of thc kind 
indicated in DI, Thus formulas like Dla are useful in any case involving 
the occurrence of a description as an argument-cxpression for a predicate 
expression, E.g, with the help of the formula ‘Q(ix)(Px) = (3. mae = 
(x=). Qy]' we can replace *O(rx)(Px)’ by *(3y)[(x)(Px = (x=). Qy]' in 
any coutext, whether ‘Q(ix)(Px)' appears there as an independent sentence 
or as a component sentence. On the other hand, formulas like Dlb are 
useful in cases that involve an identity formula having precisely onc ofits 
members in the form of a description. E.g. ‘(ix)(Px)=a’ can be replaced by 
‘@)[Px = (x=a)]": of course, if ‘@=(sx)(Px)’ is the given formula, we first 
revise it into ‘(1x)(Px)=a’ and then apply Dlb, Lastly, formulas like Dic 
suit cascs involving an identity formula each of whose members is a 
description, Thus Dlc enables us to transform ‘(7x)(Px)=(1y)(Qy)’ into 
(q2)[(x)(Px = (x =2)).(Qy = (y=2))]’. If several descriptions occur 
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in a sentence, it is a matter of indifference which of them is eliminateg first 
with the help of D1; which is to say, eliminations in various orders leag to 
results that are L-cquivalent 

While the sentences *~ (Qa)’ and ‘(~ Q)a” are synonymous and L-equiya, 
lent (see D28-1a), the same cannot be said of the corresponding sentences 
obtained by replacing the individual constants by descriptions, For 
according to the theorcm below (to TIb, in fact), the sentence ‘~ Ox) Pxy 
is L-cquivalent to '~[1(P) . (P< Q)]’ and hence to S;:‘~I(P) V ~(Pe gy. 
on the other hand, by the same theorem the sentence (~ Q)(7x)(Px) turns 

out L-cquivalent to S: ‘I(P).(P=~@Q)’, Clearly, if the uniqueness 
condition ‘1(P)’ is not satisfied (i.e, if therc are either no individuals Or else 
several with property P), then S, is true but S falsc; S, and ©, therefore 
cannot be L-cquivalent. Thus descriptions require a treatment differen, 
from that of other individual expressions. In particular, a description may 
not simply be introduced in place of an individual variable. E.g, ‘(y){ oyy 

can hold (viz, each individual may have property Q) and still *QQx)(Pxy 
fail to hold because the uniqueness condition ‘I(P)’ of the description is no 
satisfied Hence ‘Q(ix)(Px)’ is not L-implicd by ‘(y)(Qy)’ alone, but only 
by ‘(»)(Qy)' and ‘I(P)’ together (sec TIc below), Since the manipulation of 
descriptions demands special care, it is better to avoid their usc when this 
docs not Icad to undue complications. 

T35-1. The following sentential formulas are L-true: 

+a. Gx)(Fx) = (3y)[(x)(Fx = (x=y))-Gy]. (By Dla.) 
b. G0x)(Fx) = I(F).(FoG), 
©. (y)(Gy).1(F) > GOx)(Fx). (From (b).) 
d, G0xx)(Fx) = I(F).3(F.G). 
e. F(ix)(Fx) \(F). 
f. [@x)(Fx) (x)(Fx = (x=y)). (By DIb.) 

+B [(ix)(Fx) I(F). Fy. 
he [(0x)(Fx)=y] = (F={9}). 
i. [0x)(F) = Oy) Gy] = (a2) [Ex = (=). WG 

(y=2))]. (By Die.) 
§ (G0) =(0)1G))] = 1(F).1(G).3(F.G). 
k. [0x)(Fx)=(y\Gy)] = 1(F).(GSF).3(G). 
1 [6x)(Fx)=@9Gy)] = (F)(F=6). 

Exercises. 1. Give informal proofs of the following: a) Tla; b) Tle; c) Tlg; d) Til, 
©) ‘a=(x)(x=a)", —2. Give a derivation of *~ Qtvx)(Px)" fiom 
3. Formulate in symbols and give un informal proof of the following sentences (a), (b) and 
(©) in the domain of natural numbers (state all assumptions explicitly) a) “It is not the 
cuse that the number greater than two is greater than two”; b) “The even prime number 
is even’, c) “It is not the case that the square number less than five is even’: d) Does ¢) 
imply “the square less than five is odd’? — 4. Is “(1x)Fx=(ur)Fx’ L-truc? If so, give 
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on informal proof, If not, state a sufficient assumption and show that it L-implies the 
segation of the formula mentioned by giving an informal derivation, 

35b. Relational descriptions. Descriptions frequently have the form 
exy(Rxh)'s which means: “that individual which bears the relation R to 6”, 
The abbreviation ‘R‘h’ is used for ‘(7x)(Rxh)’, In these symbols, any two- 
lace first-level predicate expression can stand in place of ‘R’ and any 

individual expression can stand in place of ‘h’, Expressions like ‘R‘b’ are 

called relational descriptions. The restrictions previously notcd on the 
manipulation of descriptions with 7-operators apply equally to relational 
descriptions, 

35-2. H‘y=(1x)(Hxy). 

735-2. The following sentential formulas are L-truc: 

a. G(H'y) = (32)[(x)(Hxy = (x=2)).Gz]. (By Tla.) 
b. G(H‘y) = I(H(-y))-(H(-»)<G). (By T1b.) 
c. Un(H).memM)y > 1(H(-,y))- 
d. Uny(H).mem,(H)y. UG) > G(H‘y). (By (c) and Tic.) 

Descriptions ure seldom used in language C. A common way of avoiding them is 
through the use of functors (provided conditions specificd carlier (in 18b) on the use of 
functors ure satisfied). Descriptions of properties or relations of any level cun always be 
avoided, they can be supplanted e.g. by full expressions of functor expressions, by 
compound predicate expressions, and by expressions o1 expressions involving’ *~" 
Thus, to illustrate, instead of the following expressions from [P.M.], viz, ‘DIR’, ‘C+’, 
com" R’, “ste, “pte’, 'CI*e’, “Rie, *R'BY, “Rta’, “Ne*e’, *Ne*R’, there appeur in language C 
respectively the expressions "memn(R)’, ‘mem(R)', *R-", ‘xm(M), ‘pri(M), *subi(M)’, 
saby(1)', *R(—b)', “RCay-)', *stry(P)’, *stra(R)- 
Suppose that the uniqueness condition for a given description is provable cither on 

urely logical grounds or within a certain axiom system. In cither case, the description 
«an be treated as un individual constant It can eg be ndmitted us an argument. 
agression of a functor, in contradistinction to the previous general resiriction; and 
again, it can receive an individual constant as an abbreviation Thus ihe 1ules governing 
the construction of admissible definitions may be extended to include the following: A 
sentence of the form a= with a; a new individual constant und 4 a description can be 
ecepied as a definition provided the uniqueness condition for xj is provable, Such so- 
ulled definitions by clesctiption ure often convenicnt (see ¢ g. the remark under A2* in 44b); 
mvertheless, to admit definition by description fs to uccep! the disadvantage that the 
tus of formation for definitions thereby depend on the rules of transformation, 
Exercises. 1, Translate the following sentences, using relational descriptions when 

pessible: a) “The brother of a is a student” —h) “The father of a is a friend of the father 
f6”, ¢) “The successor of .x is always grcaicr than a” (do this in two ways: (i) using 
the two-place predicate "Suc? for “successor; and (ii) using the functor “sue'), d) “The 
predecessor of x is ulways smaller than r (Question: Can we here, us in exercise Ic, 
avoid the description by the use of u functor? Cf, 18b.); c) “That number which is both 
grime und even is the predecessor of u prime” (with the help of the s-operator), f) "a is 
fe father of b's only brother"; g) “Anyonc who is the father of the brother of his only 
‘aughtcr is also the father of the daughter of his only son. — 2. Give informal prool’s 
{the following: a) T2a, b) T2d; o) MHC.) = (Ha) "'a))". — 3, Taking the 
‘main of individuals to be the natural numbers which of the following are true? 
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a) *(Suc‘7)=8"; b) *~(Even(Gr‘4))"; c) *Pred*2= Pred*(Suc'(Pred'2))"; d) (x)(Pred‘y= 
Pred'(Suc‘(Pred*x))]"; €) “(x)[Even(x) = Even(Sq‘x)]'. 

The following systems in language C can now be read in Part Two 
(Application of symbolic logic) of this book: 43b; 52a,b; 53a, 

36. HEREDITY AND ANCESTRAL RELATIONS 

36a. Heredity. Ordinarily we say of a property (¢.g. disposition to a 
certain discasc, a proprietary intcrest, or the like) which always, or fre. 
quently, passes down from a man to his children that it is hereditary, |p 
analogy to this let us say of a property P that it is hereditary with Tespect to 
a relation R or, for short, that it is R-hereditary (symbolically: ‘Her(P,Ry) 
or that it is preserved under R, if the following condition is fulfilled: when. 
ever an R-member has property P, then so do all the othcr members to 
which this R-member bears the rclation R. 

D36-1,  /Mer(F,H) = (x)(y)(Fx. Hxy > Fy). 

Examples. The property of being greater than 5 is hereditary with respect to the pre. 
deccssor relation in the serics of natural numbers The structural properties of relations 
(134-4) are those which are hereditary with respect to isomorphism 

Exercises, 1, Tuking ihe domain of individuals to be the natural numbers, give an 
cxumple of a property which is hereditary with respect to cach of the following relations: 
a) Immediate Successor; b) Divides, c) (Ary)[(=x+2) V (x=y'+2)].-— 2. Give for 
cuch of the following properties an cxample of a relation with respect to which it is here- 
ditary’ a) Even, b) Not Prime, c) (Ax){(3y)x = 5y'+ 1). — 3. With respect to what relation 
are all properties hereditary”? — 4, What property is hereditary with respect to all rela. 
tions? 

36b. Ancestral relations. Let us take ‘Anc(a,b)’ to mean “‘a is an ancestor 
of b". How, then, might “anccstor’’ be explained in terms of “parent”, i.e, 
how might ‘Anc’ be defined with the help of ‘Par’? Speaking loosely, we 

would say ‘Anc(a,b)' amounts to ‘Par(a,b) V Par2(a,b)V Par3(a,b) Vete.’, ie, 
the relation Anc holds between @ and 4 provided some finite power of the 
relation Par holds between a and 4. To make this loose characterization 
into a precise definition we must explicate the “ctc.”, i.e. the word “finite”, 
But there is a difficulty here: we have not as yct defined the concept of a 
finite number, (Indccd, it is preferable that the concept of finite number be 
defined later, in terms of the ancestral relation being introduced here.) We 
consider the more general relation Anc’, where ‘Anc'(a,b)’ means “‘a is an 
ancestor of h, or a is the same as b”. Now Anc’ can be defined with the 
help of the concept of hereditary property treated just above; we can easily 
see that ‘Anc’(a,b)’ holds just in case a is a Par-member and 5 has all the 
Par-hereditary properties that a has, 

The following two considcrations lead to the result just mentioned. 1. Suppose thal 
Anc'(a,b) holds, Then there is a certain number », 1 >0, such that one can proceed from 
ato b byn Par-stcps; one step takes us to the children of a, two steps take us to the grand- 
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children of a,ctc Thus, from the assumption that a hus a certain Par-hercditary property 
Pi follows after n such Par-steps that b also hus property P. 2 Conversely, suppose b 
fas all the Par-hereditary properties that a does, and suppose w is a Par-membcr. If a 
ian ancestor of 1 or is the same as x, und if x is a parent of ), then evidently a is an 
ancestor of * Hence the property of x to the cffect that @ bears the relation Anc’ to x 

jsitself « Pa-hercditury property Since a obviously has this samc property, it follows 
from our originul supposition that b has this property, ic that Anc'(a,h) is the case, 

Once ‘Anc" is defined, it is reasonable to define ‘Anc’ by ‘Par|Anc”. 
Now let R be an arbitrary relation. The relation that is connected to & the 
way Ane’ is connected to Par is called rhe ancestral of R of the first kind and 
issymbolized by *R=°"; the relation connected to R the way Autc is connected 

to Par is called the ancestral of R of the second kind and is symbolized by 
+p, [The corresponding symbols in [P M.]are'R,’ and ‘R,,,’ respectively. ] 
Thus the sentence *R>(a,h)’ asscrts that some finite positive power of R 
holds between a and 4; the sentence *R2%a,h)’ asserts that either some 
finite positive power of R holds between a and fh, or R® holds between them 

(ie ais the same R-member as h). 
All these considerations lead to the following definitions: 

36-2, H2%(x,y) = mem(H)x.(F)[Her(F,/). Fx > Fy]. 

36-3. H>°=(H|H>9) 
Examples. 1. If ‘Pred’ designates the predccessor relation among naiural numbers, 

then “Pred >a, h)’ says “a is less thun bh" and *Pred>9a,b)’ says “a Is less than or equal to 
b'.— 2. The sentence *Par>9(u,b)" roads “a is an ancestor of 6, while *Par>(a,b)" reads 
“gis an unccsior of, or the same as, b™* 

The theorems below summarize the main results about the ancestrals of a 
ration. 

736-1. The following sentential formulas arc L-tiue. 
a, H9c 120, 
b. HO H22, 
ce. H2c H20, 

Etc. 
d. HoI/>9, 

e. H2< H>%, 
Etc. 

f. H>9c H20, 
g. H>°=H2>91//. 
h, H20=>0V HO. 
i, H>%(x,y) = (F)[Her(F,H).(2)(Hxz> Fz) > Fy]. 
j. (1) Trans(H*°); (2) Trans(H>°). 

Ancestrals of either kind are always transitive. (Thus the 
ancestral—of either kind—of a relation R is often a series or a 
partial order or a simple order, cven though 2 itself is not.) 

k. Her(F,H) = (HO“F)CF, 
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We owe to Frege the idca of using the concept of hereditary property to explicate the 
“etc” in mathematics and to define the concept of a finite number (see {Begriffsschrity, 
55 ff ; [Grundgesctzc] |, 59; also [P M ] 1, 569 ff, and Russell [Introduction] Ch 3), 

Exercises. 1. Give informal proofs of the following x) Tla, b) TIb, c) TId, d) Tih 
€) TIk --2, Decide whether the fellowing arc L-truc If so, give an informal proof 
If not, give a counter-example. a) “H°CH>0’, by *~ (H&S H>%)", c) *Refl(H)>(H>0e 
H>0)'3 d) “Sym H) >(H20= H>0); ¢) *Reff(I1>9) 

36c. R-families. By the R-posterity of a we understand the class of all 
those R-members to which a bears the relation R*®, i.c. the R-postcrity of g 
is the class R?°a,-) By the R-ancestry of a we understand the class of ajj 
those R-members which bear to a the relation R*°, i.e. the R-ancestry of 
@ is the class R>°%-,a), (These understandings cntail that a is counted as 
belonging both to its own ancestry and its own posterity) The union of 
a’s R-ancestry and R-posterity, viz, R?(-,a)VR>%a,-), is called the 
R-family of a and is designated symbolically by ‘fam(R,a)’. The R-interyal 
between a and b, symbolized by ‘int(R,a,h)’, is understood to be the inter. 
section of a's R-postcrity with b's R-ancestry, viz R2%a,-). Rb), 
Definitions of the functors ‘fan’ and ‘int’ thus run as follows: 

36-4. fam(H,x) = H>%(-,x)VH>%x,-). 
D36-5. int(H.xy) = H>(x,-). H>%-,). 

Exercise. Symbolize and give un informal proof of the following 
equivalence relation (see 34a), the H-family of x is the equivalence class of . 

In Part Il (Application of symbolic logic) of this book, the following 
systems in language C can now be read: 53b and 54a, b. 

37. FINITE AND INFINITE 

37a. Progressions. In the series of natural numbers the predecessor 
relation Pred has the following properties: (1) it is one-one; (2) it has 
exactly one initial member; (3) it has no terminal member; and (4) of any 
two distinct Pred-members, one can be reached from the other in finitely 
many Lred-stcps, ic. the rclation Pred>° is connected. Jf an arbitrary 
relation R has thesc four properties, we say that R is a progression and write 
‘Prog(R)’. Given two progressions, R and S, a correlator (see 19) for them 
can be determined as follows: Let the initial member of R be coordinated 
with the initial member of S; and if a member x of R is coordinated with a 
member y of S, then let the R-successor of x be coordinated with the 
S-successor of y. Since any two progressions can thus be correlated, itis 
the case that any two progressions are isomorphic (sec Tla below). It is 
clear, moreover, that any relation isomorphic to a progression is itself a 
progression (cf, Tib). Hence Prog is a (two-placc) structure (cf. Tle), 
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We call a class P denumerable, and write ‘Xo(P)’, provided there is a 
rogression whose members are the clements of P, The symbol ‘No’ is 

read “aleph-zero" (sometimes “taleph-null”, due to a mistranslation from 

the German “Aleph-Null"). A corrclator between two progressions being 
simultancously a class-correlator between the fields of these progressions, it 
follows that there hold for & theorems analogous to those for Prog (cf. 
Tid,c,f). In particular, TIf says that Xo is a cardinal number; indecd, Xo 

js the smallest transfinite (i.e. non-finite) cardinal number. 
On the basis of the discussion above we now proceed to state the definitions 

and theorems, 

D37-1. Prog(H) = Un,,.(H) . l(init(H)) . O(init(H-)) . Conmex(H>°), 

37-2. No(F) = (gH) [Prog(H) . (F=mem(H))]. 

737-1. The following sentential formulas are L-truc: 

a, Prog(H).Prog(K) > Is,(H,K). 

b. Prog(I1).Is,(Ii,K) > Prog(K). 
+c. Str,(Prog). (By (a), (b), and T34-3c.) 

d, No(F).No(G) > 1s,(F,G). (By (2).) 
e, No(F).1(F,G) > XG). (By (b).) 
f, Sir\(Xq). (By (d), (c) and T34-3c.) 

Exercises. 1. Give informal proofs of the following: a) Tla; b) Tlb; c) Tle; d) 
*prog(H )> Ser(H >)’; e) ‘Prog(H)> SOrd(H >9)', —- 2. Is the converse of a progression 
aprogression” If so, give an informal proof; if not, give a counter-example, — 3. Which 
of the following are L-truc? 4) *No(F).(GSF).(G#F) > No(F.~G)': b) Prox(H). 
mem Hx) > Prog te 12x)"; ¢) *Prog(H mend 1x) > Xo fam t,x)" 

37b. Sum and predecessor relation. If M, and M, arc cardinal numbers 
(Str,), we designate their arithmetic sum by ‘swm(M,,M>)'. (Our notation 
‘swn(M,M2)° supplants the more customary notation ‘M,+M,'.) By 
‘sunt(M,,M2)' we mean the cardinal number of any class which can be 

partitioned into two subclasses with no clements in common and such that 
one of these subclasses has cardinal M, and the other, cardinal M2. Again, 
if M, and M, are cardinal numbers we take ‘Pred(M,,M,)' to mean that M, 
isthe immediate predecessor of Mz, i.c. that M,+1=M). {In the definitions 
of ‘sunt’ and ‘Pred’ below, arguments are not restricted to cardinal numbers 
but can be arbitrary classes (of at least the second level). However, since 
the use of ‘sw’ and ‘Pred’ is in practice confined to cardinal numbers, 
amatter of indifference what significance these signs have for other argu- 
ments.} 

37-3. sunt(N,,N2)(F) = (3G1)(3G2)[(F= Gi V G2). ~ 3(G; G2). Ni(G)). 
NG2)]. 

37-4, Pred(N,,N2)= [sum(N,,1)= 2]. 
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137-2, The following sentential formulas are L-truc; 

a. Str,(N\).Str\(N2) > Stry(suat(N,.N2))- 
The sum of two cardinal numbers is again a cardinal number, 

b. Sir\(N,).Pred(N,,N2) > Str;(N2). (By (2).) 
ec. sum(0,1)=1, 

sun(1,1)=2, 
swmn(2,1)= 3, 
ete, 

d. Pred(0,!), 
Pred(1,2), 
Pred(2,3), 
etc, (By (c).) 

@. sum(Xo,1)= Xo. 

Proof of (c). 1. Let Rbca progression, und P be the field of R. Thus P is denumerable 
and has Np for its cardinal number Let Q be that subclass of P comprising all the 
elements of P except the initial member a of R Let S be R confined to Q,ic let S be 
that subrelation of R comprising all the pairs of R except the first one Clearly $ is also 
a progression Since @ is the field of S, Q is denumerable. Now P is also OV{ ind 
hence musi have sw(Xo,1) for its cardinal number —2. If No is empty, then 
Sum(No, 1) is likewise empty — Together, these considerations lead to (c) ubove, 

Exercises. Give informal proofs of the following: a) T2a, b) T2c; c) ‘swn(Ny,N2)= 
sum(N2,N1)’ , d) *stum( Ni, sume N2,N3))=sune(simn(N),N2)N3)', €) *~ Pred(N,0)', 

37c. Inductive cardinal numbers. Thcre are two ways to explicate the 
difference between fmite and infinite classes and, in connection with this, 
the difference between finite and infinite cardinal numbers. The first is 
explained here, the sccond in 37d. The first way cxplicates the concept of 
the finite through the concept of inductive cardinal numbcr. A cardinal 
number M is said to be an inductive cardinal mumber (symbolically: 
‘Str, Induct(M)’) provided that cithcr M is 0 or is attainable from 0 by 
finitely many additions of | (ie. by finitely many Pred-stcps); which is to 
say, M is an inductive cardinal number provided the relation Pred>° holds 
between 0 and M, Similarly, a class P is called an inductive class (sym- 
bolically: ‘C/s/nduct(P)’) provided the cardinal of P is an inductive cardinal 
number. 

D37-5.  SirjInduct(N) = Pred>0,N). 
37-6. ClsInduct =sm,(Str, Induct). 

The so-called principle of mathematical induction frequently used in 

arithmetical proofs runs as follows: “If somcthing holds for the number 0 
and, in case it holds for any number N, it holds also for N+1, then this 
something holds for every finite number”. The word “finite” expresses an 
important limitation of this principle. It is not possible to say simply 
“*... holds for every number” since e.g. the property expressed by ‘NA N+’ 
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attaches to 0 and also attaches to N+! if it attaches to N, but nevertheless 
does not attach to NX (cf. T2c). The explication above of “finite number” 
by way of “inductive cardinal number” amounts to characterizing finite 
numbers as those for which the principle of mathematical induction holds; 

for it follows from DS that N is an inductive cardinal number if and only 
if the induction principle holds for N (see T3d below). The illustrative 
property just cited, viz. the onc expressed by ‘N#N+1’, shows that the 
jnductive principle docs not hold for Xp, and further that Xp is not an 
inductive cardinal number (T3c). (The preceding remarks presuppose that 
Nq is not cmpty; compare 37e.) 

137-3. The following sentential formulas are L-truc: 

a. StiryInduct(M), 
where ‘M’ is any onc of the predicates ‘0’, ‘1’, “ 
in accordance with D17-3. (By T2d.) 

Str, Induct Str,. 

c. Strynduct(N) = (K)[Her(K,Pred).K(0) > K(N)]. (By D36-2.) 
d, Str Induct (N,) = (K)[K(0).(N2)(K(N2) > K(sum(N2,1))] > 

K(N,)] (By (c), D36-1, and D4.) 
e. 3(Ry) > ~ Strynduct(&o) (By T2e.) 

Exercises. 1. Give informal proofs of the following: a) ‘Sir /uduci(2)' (do not use 
Tia), b) T3b, c) T3e, d) T3e, €) “St AnchncH(N4) «Str fnduet(N2)> Sh Induct (sum(Ni,N2))', 
1) ‘Si nchict(N) > (3N2) Pred(Ni Na). Shr yinduct(N2))";—g) “Str tnduct(N)= Str Induet 
(sun(N.1))" == 2. Translate the following into English and decide whether it is L-truc* 
*(MESi Induct) 3M) > (3NiIM(N1)CN2(M(N2) > Pred2%NiN2))]". 

, ete., defined 

a 

37d. Reflexive classes. We saw carlicr (in connection with the proof of 
T2e) that a certain subrelation of a progression R is also a progression, and 
hence that the ficld P of R is both denumerable and has a proper subclass 
which is dcnumerable, Thus P is isomorphic to a proper subclass of itself 
(of. Tid). This last obviously cannot occur when the class in question is 
finite, since a proper subclass of a finite class must always have a smaller 
cardinal number. Here, then, is a second way to explicate the difference 
between the finite and the infinitc, viz. to characterize infinite classes as 
precisely those classes which are isomorphic to proper subclasses of them- 
selves. A class P that satisfies this condition is called a reflexive class; in 
symbols. ‘C/sRef(P)'. (The notion of a reflexive class is, of course, not to 
be confused with that of a reflexive relation specified in D3l-3a.) The 
cardinal number M of a reflexive class is called a reflexive cardinal nwnber: 
‘Sir,Ref(My (sce D8 below). This conccpt of a reficxive cardinal 
number is here taken as an explicatum for the conccpt of an infinite 
cardinal number 

D37-7.. ClsRef(F) = (3G)[(G< F).(G# F).1s\(G,F)]. 
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D37-8. Str, Refl=str,“‘Cls Refi. 

A word, finally, about the contrasts between the classification ot this 
section and of the preceding one Inductiveness and reflexiveness arg 
mutually exclusive (sec T4b below). On the basis of the principle of Choice 
(which appears as the primitive sentence PII in the syntactical system R- 

see 22a and the related discussion in 22b), it can be shown that—apart from 
the improper null cardinal number A,—cach cardinal number is either 
inductive or reflexive, and hence that our two classifications coincide (cf, 
T4c). When it comes to classes, the two classifications agree without 
exception (T4d), 

137-4, The following sentential formulas are L-true: 

a, Sir, Refl < Sir). 
b. Sir, Refl < ~ Str, Induct. 
ce. Sir(N).(N#A,) > [Str,Ref(N) = ~ Str Induct(N)]. 
d. ClsRefl=~ ClsInduct. (From (c).) 
e. Xo S ClsRefl. (By T2e.) 

The denumerable classes are reflexive. 
f, 3(Xo) = Sir, Ref(%o). (By (e) and TIf.) 

If No is not empty, it is a reflexive cardinal number; and 
conversely. 

Exercises. 1. Give informal proofs of the following’ a) T4b; b) T4e; c) Taf. 

37e. Assumption of infinity. Some systems include in thcir bases an 
assumption to the effect that there are infinitcly many individuals. Normally 
this assumption is included eithcr as a primitive sentence of a syntactical 
system (in which case, the assumption is often called “axiom of infinity”; 
sec the note to P12 of language B in 22a, and comments in 22b related 
thercto), or as a rule in a semantical system by which the assertion of infinity 
becomes L-true. [Whether it is justifiable to count this assertion as a purely 
logical one is, however, a contested question; cf. Carnap [Syntax E] § 38a.] 
Still other systems do not include this assumption in their bases, but use it 
only as a premiss from which other sentences are derived. 

If it is desired to systematize the arithmetic of natural numbers in such 
a way that the familiar arithmetical theorems are provable within the system 
on the basis of the definition of inductive cardinal number (by which in turn 
the concept of natural number is explicated), then it is neccssary to include 
the assumption of infinity in the basis of the system. While it is the case 
that all affirmative truc sentences without variables, e.g. ‘S+2=7’, are 
provable withour this assumption, the same is not so for certain negative 
true sentences, ¢.g. ‘646+1” (in this connection, see T5e and the notes 
following TS). In TS below we give various formulations of the assumption 
of infinity. 
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737-5. The following sentences (a) through (i) are L-equivalent to each 
other; cach of them says that the number of individuals is infinite. 
(If any one of these sentences is taken as primitive—i.e. as an 
“axiom of infinity”, then each of the others is provable.) 
{Here a superscript immediately to the left of a logical constant 
indicatcs the level of this constant in the sentence in question. 
E.g. ‘2Prog’ designates a certain class of the second level, viz. the 
class of all progressions of the first level (progressions of indi- 
viduals).] 

a, 32%), 
There is a denumerable class of individuals. 

+b. 3(2Prog). 
Therc is a progression of individuals. 

+e. (N)[Sirinduct(N) > 3(N)). 
For each inductive cardinal number N there is a class with N 
individuals. 
~3Str Induct(?2A)). 
The (sccond-level) empty class is not an inductive cardinal 
number. 
(N)[3SiryInduct(N) > (N#sum(N,1))]. 
For no inductive cardinal number WN is it the case that 
N=N+1, 

+f. 3(2ClsRefl). 
There is a reflexive class of individuals. 

B. ASrr, Refl(2&q). (From T4f.) 
No is a reflexive cardinal number. 

h, 4Prog(3Pred in 3Sir,Induct). 
The predecessor relation among inductive cardinal numbers is 
a progression, 

i, #Xo@Srr, Induct). 
The class of inductive cardinal numbers is denumerable. 

d. 

To understand better these various formulations of the assumption of infinity, and the 

fact that ccrtain sentences are provable only with the help of this assumption, it is helpful 
to see what follows if the camain of individuals is fintte Suppose c g. the number of 
individuals is 5; then the following statements are readily shown to be true on the basis 

of our earlicr definitions, (The corresponding sentences arc provable if a sentence to the 
effect thut the number of individuals is S—e.g *5(V1)", where *V;" is a first-level predicate 

—is taken for our primitive sentence P12 in 22a) The cardinal numbers 0,1,2,3,4,5 are 
all different from cach other and non-empty. Contruriwise, the inductive cardinals 
6,7,8, cic , ure all empty and hence identical with cach other (cf T29-3c), It is the cuse 
that 6=6+1=7 Fvery class of individuals is an inductive class, It is the case that 
Pred(5,6) and Precl(6,7), and also that Preci(5,7) since 6=7. Because 5#6, the relation 
Prec! among inductive cardinal numbers is not one-many, and hence is not a progression. 
Although the number of classes increases from level to level, there is no finite level at 
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which an infinite class or a progression appears: thus Prog and Xp are empty at every 
finite level, 

Exercises, 1. Give informal proofs to show that each of the following is L-cquivalent 
to some preceding sentence of TS: a) TSb, b) T5e; ¢) TSd; d) TSe —2. How many 
different second level classes would there be if there were exactly one individual? 

The following systems in language C may now be read in Part I] (Applica. 
tion of symbolic logic): 44b, 46b, 51b. 

38. CONTINUITY 

38a, Well-ordered relations, dense relations, rational orders. We say that 
an element a is a minimum of a class P with respect to a relation R, and write 
‘min(P,R)(a)’, provided a is an R-member which belongs to P but no other 
clement of P bears the relation R to a, A minimum of P with respect to 
R-' is counted a maximum of P with respect to R. 

D38-1. min(F,H)(x) = Fx.mem(H)(x).~(3y)[(y 4x). Fy. Hyx]. 

A relation R is called sve//-ordered or a well-ordering relation—we write 
‘WOrd(R)'—if R is a simple order and every non-empty class of R-members 
has at Icast one minimum with respect to R. The structure of well-ordered 
relations arc called ordinal numbers, and designated ‘NO’ (from “numerus 
ordinalis”). 

D38-2. WOrd(H) = SOrd(H) . (F)[(Fomem(H)) . 3(F) > 3(min( F,H))). 

D38-3. NO=str,“WOrd. 

To every ordinal number M there corresponds cxactly one cardinal 

number J, viz. the cardinal number common to the fields of the relations 
which have the structure M. For inductive cardinal numbers, the converse 
holds also: each corresponds to exactly onc ordinal number. Thus e.g. 
the cardinal number | corresponds to that ordinal number which is the 
class of all well-ordcring relations having exactly one member, c.g. the 
relation {(a,a)} (sce the paragraph in small print in 31d). [On the other 
hand, there is no series with exactly one member. Therefore, if the ordinal 
numbers are defined as structures of certain scries, then there is no ordinal 
number Onc analogous to the other ordinal numbers.] 
A rclation R is called dense when with each two distinct members x and y 

such that Rxy there is a third (“intermediate”) member v such that Rxw and 
Ruy. Thus ‘‘R is densc”’ is expressed by ‘(R.J)<(R.J)”’, and more simply 
by ‘Ro R® if R is irreflexive. 
A relation R is called a rational order, symbolically ‘(R)’, provided R 

is a simple order which is dense and whosc field is denumcrable. 

D38-4. (H) = SOrd(H) « [(H.J)<(H.J)?] « No(mem(H)). 
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Rational orders can be divided into four kinds, separately designated with 
the help of subscripts: (1) rational orders which have no initial member and 
no terminal member (designation: *yo9’); (2) rational orders which have a 
(one) initial member, but no terminal member (‘m9’); (3) rational orders 
which have no initial member, but do have a terminal member (‘n9,"); and 
(4) rational orders which have both an initial member and a terminal 
member (‘7),"). Analogous distinctions will be made in connection with 
the concepts of 38b. Rational orders of the same kind are isomorphic (see 
Tila below), and each of the four kinds is a structure (TIc). 

Examples. The relation Smaller among the rational numbers between 2 und 3, but 
excluding 2 and 3, is a rational order of the moo kind; including 2 but not 3, of the 710 
kind: including 3 but not 2, of the nor kind; including both 2 and 3, of the 11 kind 

Exercises. 1. Taking the domain of individuals to be the natural numbers, what are 

the minima of the following classes with respect to the relation Pred? 1) {2,3,4,5}; 

+) {2.3.5.6}, c) {2,5}; d) ls Preda well-ordered relation? — 2, Taking R to be a progression 
and S to be the converse of R, which of the following relations are well-ordered? a) R; 

b) S; c) R>; d) S>%, c) R20; f) $20, — 3, Does the class of rational numbers greater 

than two have a minimum with respect to the relation Smaller? 

38b. Dedekind continuity and Cantor continuity. We say that R is a 
Dedekind relation and write ‘ Ded(R)', provided: For cach two classes and 
G such that each element of F bears the relation R to every clement of G, 
there is a z which “separates” F and G in the following sense: if x is any 
element of F different from z and y is any element of G different from z, then 
it is the case that both Rxz and Rzy. Precisely: 

D38-5. Ded(H) = (F\(G)[(x)(y)( Fx. Gy > Hxy) > (3z)(x)(»)(Fx. (x #2). 

Gy.(y#z) > Hxz. Hzy)]. 
Let R be dense and a Dedekind relation. If, moreover, R is a series, R is 

called a Dedekind series or a series having Dedekind continuity (symbols: 
‘DedSer(R)'). lf, on the other hand, R is a simple order, R is called a 
Dedekind order, or an order having Dedekind continuity (*DedOrd(R)’): 

D38-6. a. DedSer(//) = Ser(H).(H¢ H?). Ded(H). 

b. DedOrd(I1) = SOrd(H).[(H.J)¢(H.J)?] . Ded(H). 

We say that P is a median class for the rclation R provided P is such a 
subclass of the field of R that between any two distinct members of R for 
which R holds there is a third intermediate member which belongs to P: 

D38-7.. Med(F,H) = (x)(»)[Hxy.(x#y)> (qu)(Fu.(x#u).Hxu.(u#y). 
Huy)). 

Let R be a serics or a simple order. Then R is said to be a continuous 
series or order (morc accurately; to have Cantor continuity) provided: Risa 
Dedekind serics or order, and there is a denumcrable median class for R. 
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That a relation R is a continuous scries or order is symbolized py 
*ContSer(R)’ or ‘ContOrd(R)' respectively. Cantor continuity implies 
Dedekind continuity, but the converse is far from being true. 

D38-8. a. ContSer(H) = DedSer(H).(3F)[No(F). Med(F,H)). 
b. ContOrd(H) = DedOrd(H).(3F)[Ro(F). Med(F,H))" 

In analogy to our division of rational orders into four kinds ny, (m ig 
0 or 1, » is 0 or 1), we divide Dedekind rclations into four kinds, Ded. 
Dedekind series into four kinds, DedSerm,; DedOrd into four kindy. 
DedOrdyy, ContSer into four kinds, ContSerm,; and ContOrd into fou, 
kinds, ContOrdyn,. Continuous series or orders of the same kind are 
isomorphic (sce TId below), and each kind of continuous series or con. 
tinuous order is a structure (TIf and i). For these two reasons, the Cantor 
concept of continuity is preferred to the Dedekind one. 

‘The relation Smaller among the real numbers of any interval is continuous, and the 
rational numbers in that interval constitute the denumerable median class. ‘The relation 
Smaller umong all real numbers is a continuous serics of the kind ContSeron, 

738-1. The following sentential formulas are L-true. [The subscript 'm' 
is to be supplanted by one of the two numerals ‘0’, ‘1’; and 
similarly for the subscript 'n’.] 

& Anu). Mma K) > 18(H,K). 
be Amu H)-18(H,K) > tml K). 

+. Str'o(1Xm,). (From (a), (b), and T34-3c.) 

d. ContSer nH). ContSering(K) > IsH,K). 

&. ContSerny( HH). 18,(H,K) > ContSernp(K)- 
+f. Stro(ContSery,). (From (d), (e), and T34-3c.) 
B ContOrd,(H).ContOrdiy,(K) > Is,(H,K). 
h. Cont Ordma( H).18,(4,K) > ContOrdng( K). 

+i. Str,(ContOrdy,). (From (g), (h), and T34-3c.) 

The following systems in language C can now be read in Part II (Applica- 
tions of symbolic logic): 45; 48a, b, c; 52c. 

a) Tla; b) Tid; c) Tig; d) 
‘ont Ord( H )= ContOrd(H~)'; 

“H is dense if and only if 

Exercises. 1. Give informal proofs of the following: 

“Ded(H)= Ded(H-')'; ¢) ‘Med(F,H)= Med F.H-*)'; £) 
g) “If H is dense, then the field of H is a median cluss for H’ 
there is u median class for H". 



PART TWO 

APPLICATION OF SYMBOLIC 
LOGIC 

Chapter D 

Forms and methods of the construction of languages 

Preliminary remarks. Part If of this book is devoted to showing how 
symbolic logic is used, be it in the symbolization of general languages 
or in the formulation of special axiom systems. Our demonstration will 
utilize the symbolic languages given in Part 1, occasionally with some 
modifications (see e.g. 40). 
Chapter D sets forth several general considerations about forms and 

methods of the construction of languages. We begin in 39 with so-called 
thing languages without quantitative terms, languages which arc formulable 
entirely within the framework of the language forms previously described, 
In contrast to these language forms, which contain designations of objects, 
we turn in 40 to language forms which contain designations of positions 
(numerical expressions as coordinates) ; we call these “coordinate languages". 
There follow in 41 certain gencral remarks about the formulation of 
quantitative concepts in thing languages and in coordinatc languages; 
such formulations have for their main purpose the specification of the 
values Of measurable magnitudes. Finally, in 42, we discuss the mcthod 
of axiom systcms (‘axiom system" is abbreviated “AS", “axiom systems” 
is abbreviated “‘ASs") and consider their relation to the proccdure of 
symbolization and formalization. 
Beginning with Chapter E, a series of particular axiom systems will be 

formulated symbolically. 

39, THING LANGUAGES 

39a. Things and their slices. In many branches of empirical science we 
have to do with the properties and relations of physical things. This 
happens whether we deal with inorganic things (e.g. rocks) or organic things 
(c.g. organisms and their parts; human beings). In any case a thing 

157 
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occupies a definite region of space at a definite instant of timc, and a tem. 
poral scries of spatial regions during the whole history of its cxistence, 
T.c. a thing occupies a region in the four-dimensional space-time continuum, 
A given thing ata given instant of time is, so to speak, a cross-section Of the 

whole space-time region occupied by the thing. It is called a sfice of the 
thing (or a thing-moment). We conceive a thing as the temporal series of 
its slices. The cntire space-time region occupied by the thing is a class of 
particular space-time points which we speak of as “the space-time points 
of the thing”. 

Different language forms can be uscd in symbolizing sentcnces about 
things; what distinguishes these forms arc the different types employed, 
The most significant Questions respecting any language form so used are: 
(1) What do expressions of the individual type designate? (2) To what 
type do the designations of things belong? 

In 39b below we discuss various forms of the thing language. Before 
beginning that discussion it is helpful to identify scveral of the most im- 
portant re/ations between space-time points or space-time regions, and to 
specify symbolic predicatcs for them (we will use these predicates later in 
examples). These predicates are either introduccd into a particular lan- 
guage form as primitive predicates or defincd therein on the basis of other 
predicates. 
Among the most important relations between space-time points (regarded 

as individuals) are simultaneity and the timc relation. Two space-time 
points x and y have the rclation of simultaneity, and we write ‘Sim(x,y)’, 
provided x and y are simultaneous, i.e. provided x and y have the same time 
instant, A spacc-time point x bears the time rclation to a space-time 
point y, and we write ‘Txy’, provided x is earlier than y, i.c. provided x has 
an carlicr timc instant than y, 
Among the most important relations between space-time regions (regarded 

as individuals) arc simultaneity, the time relation, the part relation, and 
the slice-thing relation. Two space-time regions x and y have the relation 
of simultancity, and here we write ‘Simr(x,y)', provided x is entirely 
simultaneous with y. A space-time region x bears the time rclation te a 
space-time region y, and here we write ‘Tr(x,y)', provided x is entirely 
earlier than y. A space-time region x bears the part relation to a space- 
time region y, and we write ‘Pxy’, provided x is part of y (no new predicate 
is required if regions are conceived as classes of space-time points, rather 
than as individuals; in this casc, the subclass relation suffices), Lastly, a 
space-time rcgion x bears the slice-thing relation to a space-time region y, 
and we write ‘S/i(x,y)’, provided x is a slicc of the thing y. 
Two remarks in closing. If a language form is adopted in which space- 

time regions are represented as classes, the same signs can be used for the 
relations named above—in this case, however, these signs must appear as 
predicates of a higher level, e.g. ‘Simr(F,G)'. Second, the relations named 
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above occur in several of the axiom systems to be treated later, and may 
enter different systems in different ways; c.g. the system of 48 takes the 
relation 7 as a primitive concept and defines the rclation Sim, the system of 
49 takes both these relations as defined, the system of 52 takes ‘71’ and ‘P’ 
as primitive signs and ‘S/i” as a defined sign. 

39b. Three forms of the thing language; language form I. We now 

divide thing languages into three main kinds, 1, Il, III and in each case 
make some further distinctions. 

Language form I. Here the individuals are taken to be space-time 
regions, particularly things. We distinguish three subdivisions of this 
form, as follows: 
Language form IA. Here only four-dimensional space-time regions are 

taken to be the individuals; here, thercforc, things are individuals, but not 
thing slices. This choice is the simplest so long as sentences of the language 
are not expcctcd to contain referenccs to different time points. (Such is 
the casc ¢.g. if assertions are to be made only about permancnt properties of 
things, or if things are to be described only at a fixcd instant of time or 
during a given interval of timc within which changes are ignored.) 

As cxamples of sentences in this language form we may tuke those illustrative sentences 
of Part One that employ thing predicates like *Blte’, ‘Sind’, *Fa’, etc. (lists of such piedi- 
cates uppear in 2c, under the heading of domain | and domain 2) ‘The ASs in S4a,b 
governing kinship relations likewise bclong here. 

Language form 1B. Herc the individuals are taken to be space-time 
regions of definite but finite extent; here, therefore, both things and thin, 
slices count as individuals, but not space-time points. This language form 
is the most convenient when we are content to speak of small but definite 
space-time regions instead of space-time points, yct wish—here departing 
from 1A—to distinguish between various instants of time. (Woodger’s 
system bclongs to this language form, see 52 and 53; see also 55d, Problems 
26 and 27.) It is possible, within this language form, to represent space- 
time points as relations of individuals, viz. as sequences of regions con- 
verging to zero. (This representation is uscd e.g. by Whitehead in defining 
“point events” as “‘abstractive series” of “events”; see 55, problem 22.) 

Examples. To illustrate the present language form, us well as subsequent ones, Iet us 
agree now on two sentences which we propose to translate into the various language 
forms Our two sentences are 1 “Peter was once in Chicago and was later a student," 
and 2 “Peter was always happy when he was in Chicago at the same time Herbert was."" 
The signs to be utilized in our translations are for “Peter”, the sign ‘pe’ (used as an 
individual constant, as in forms 1A, 1B, IC) and the sign ‘Pe’ (used as a predicate, us in 
forms Il and III below; specifically, in forms IlAa and I1Be the sign *Pe" is a one-place 
predicate of the first level, in forms IIAB and IIB it is a two-place predicate of the first 
level, in Ile it is a one-place predicate of the first level, in 1118 it is a one-place predicate 
of the second level, sind in II ly it is a two-place predicate of the first level), for “Herbert”, 
‘he’ and ‘He’ in the senses just explained for “Peter”; for “Chicago”, ‘eh’ and *Ch’ 
similarly, for “student”, ‘Stud, and for “happy” 
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Examples for lunguage form 1B Translation of sentence 1. "(ax\(3y)LSli(xpey 
SHity.pe).TH(x3) Poel) Sind(3)}" Translation of sentence 2 “CxI91SHi(x,pe). Slishe), 
Pls). POseh). Sim (,3)> Hapa Purther, it is to be noted that the examples sug. 
gested for form IA are also examples tor form 1B. 

Language form IC. Here al/ space-time regions without exception 
including space-time points (the lattcr being defined as the smallest non, 
empty space-time regions), are taken as individuals. This language form 
is the simplest respecting mattcrs of type, because in it space-time Points 
and thing slices and things are all of the same type. 

Examples, The examples cited for 1A and 1B serve here, too 

Exercises, 1. Why could the translations for sentences 1 and 2 given in the example, 
not occur in language form 1A — 2. For cach of the following predicatcs (introduced 
in 39a) decide to which of language forms 1A, 1B, IC they belong a) ‘Sim’, b) ‘T"; 
“Sim; d)‘Ts"; 6) *P'; £) *Sli*. — 3, Translate the following into us many of languagy 
forms 1A, 1B, IC as possible a) “Herbert was always happy when Peter was .n Chicago”: 
b) “Herbert was a student after Peter was in Chicago”. s 

39c, Language form II. [n this form space regions, space-time 
regions with zero temporal extent, arc taken as individuals; here, in par. 
ticular, thing slices and slices of thing parts count as individuals. We 
distinguish two kinds of this form; and further, in each of thesc kinds, 
two subordinate kinds. 

Language form IIA. Here only space regions of finite spatial extent are 
taken as individuals; hence space-time points arc not regarded as indi- 
viduals. (Such points can be represented here just as they were in form 1B, 
viz, as convergent sequences.) Two subforms arc distinguished on the 
basis of the representation of things. 

TIAa. Here a thing is represented as the class of its sliccs. 
IAB. Here a thing is represented as a relation of its slices, say as a 

temporal series of slices. ({n this casc, if R is a thing then ‘Rab’ reads: 
“a and b are slices of R and a is earlicr than 6.”) 

Examples, In form NAc: 1. (31X39%32)[Pe(x). Pes). Tr6x.3). Ch(z). Pxz. Sind(y)}. 
2, “(IONz)L Pela). Hels). Cz). Pxz. Ps 2. Sim (,")> Haplx)]’. In form IAB: 1, 
“(3x39 32)[Pe(x.y).mem(Ch)(z).Pxz.Sind(s )] 2. (xXoXz)[mem( Pe)x mem He)y. 
mem(Ch)2)..Pxz.Py2.Sinv (x,»)> Hap(x)]'.. These translations show that Example | 
‘comes out simpler in form f than it does in form a, and that Example 2 comes out simpler 
in a than it does in 8. Thus form 8 is to be preferred in cases that concern several slices 
of the same thing in their temporal order. 

Language form IIB. Herc a// space regions, including space-time points, 
are taken as individuals. (Spacc-time points arc defined as the smallest 
non-empty spatial regions.) Subforms IIBa and 11B8 are introduced here 
just as in LA. 

Examples, See those given for 11A 
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Exercises. 1, Translate the following into language forms IIAq, IIA8, I1Ba, 11BB: 
“Herbert was always happy when Peter was in Chicago"; b) “Herbert was a student 

after Peter was in Chieago™ 

39d. Language form III. This form takes as individuals just the space- 
jime points. (The systems of space-time topology in 49 and 50 are of this 
form; the system of 48 is of a language form similar to III and to 11B, but 

with world-points—i.c. particle slices—as individuals instead of space-time 
joints.) Here thing slices and sliccs of thing parts are represented as 

classes of space-time points. Three subforms are distinguished on the basis 

of the representation of things, 
Illa. A thing is represented as the class of its space-time points; here, 

therefore, a thing slice is a subclass of the thing. 
1g. A thing is represented as the class of its slices; thus here a thing 

slice is an clement of the thing, 
Illy. A thing is represented as a relation of its slices, say as a temporal 

series of sliccs (as in IIA8); here, thercfore, a thing slice is a member of the 
thing. 

Examples, Again we furnish translations of our (wo prototype sentences, 1 and 2, in 
each of forms IIl«, 1118, Illy. (Our translations arc formulated in the symbolism of 

language A of Part One; were language C uscd instead, we could formulate the subclass 
relation more conciscly with the help of the sign *<" introduced in D28-3.) In form 

Mle: 1. "(BF MAG)SHCF, Pe). S1i(G, Pe). Tr F,G) (xX Fx> Ch(x)).Simd(G)]. 2. (FXG) 
[SCF Pe). SI(G, He). (x) FxV Gx> Chix). Sim (F,G)> Hap(F)}'. In form 1118: 1. (3F) 
GGX3H Pett). Pe(G). Tr FG).ChH).(xXFx> Hx).Stud(G))'. 2, (EXGKH PEF). 
He(G). ClCH). ()( FeV Gx > Hx)..Sim(F,G)> Hap FY). In form Illy: 1. QF aGK3H) 
[Pe(F.G). mem Ch)(H ).(x)(Fx> Hx). Stud(G)}. 2. (FG) H )[mem( Pe) F).mem(He)(G). 
mem( Ch 11). (xX Fx V Gx> Hx). Simr(F,G)> Hap(F)]'. 

Exercises, 1. Translate the following into Ila, 1118, Illy: a) “Herbert was always 
bappy when he was in Chicago”; b) “Herbert was a siudent after Peter was in Chicago”, 

40. COORDINATE LANGUAGES 

40a. Coordinate language with natural numbers. In many domains of 
individuals cach individual is identified by its position in some appropriately 
ordered system. The basic ordcring here may be a linear one (e.g. of 
people according to age), or a circular one (c.g. that of colors in a color 
wheel), or even a many-dimensional one (c.g. the three-dimensional ordcring 
of points in spacc), By a coordinate language we undcrstand a language 
in which the form of an individual expression indicates the position of 
that individual in the basic ordering system—this in contrast to an indica- 
tion of position by means of sentences about relations between this individual 
and other individuals. Usually the order is represented by an association 
of positions with numbers, the numbers being viewed as “coordinates” of 
the position, in which case numerical expressions or #-tuples of such (when 
the basic ordering is n-dimensional) appear as individual expressions. 
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Now let us construct a particular coordinate language by supplementing 
language C of Part I in acccrtain way. Suppose the positions of the system 
in question have the order of a progression (recall 37a), i.c. a ong. 
dimensional discrete ordering with a sing/e initial position and no terminal 
position. First, we introduce designations for the natural numbers, We 
agree that ‘0’ designates the number Zcro, and that the successor of g 
number a has the designation ‘a”. Thus ‘0’ stands for the number One 
‘O” for the number Two, ctc. Next, the natural numbers are taken to be 
the values of the individual variables ‘x’, ‘y', etc. Number expressions can 
then be used as indirect references to the positions of the progression 
through the device of “coordinates”: the number 0 is taken as the co. 
ordinate of the initial position of the system; the number 1, designated ‘0 
is taken as the coordinate of the next position, etc. Thereupon eg, 
“Blue(O")’ may be read; “The position with coordinate 2 is blue”, Strictly, 
‘O” designates only the pure number Two; reference to the position docs 
not belong to the significance of ‘O", but to that of the predicate ‘Bie! 
whose significance is “The position having ... as coordinate is blue.” Jt iM 
convenicnt, however, to speak as if thc individual expressions designate not 
only numbers, but coordinatcd positions of the system as well. For this 
Teason we often call such positions (be they spacc points, time points, or 
space-time points) the individuals of the coordinate language in question, 

An important new means of expression in this coordinate language is the 
K-operator. This operator is only used with numerical variables; we take 
(Kx)(. ) to mean; “the smallest natural number -x satisfying the condi- 
tion ‘...x...", or Zero in case no natural number satisfies that conditioy 
Accordingly, a K-cxpression (i.e. a full expression of the K-operator, com. 
prising both opcrator and opcrand; as e.g. ‘(Kx)(Px)') is not a sentence, 
but an individual expression and so a numcrical expression. Thus K- 
expressions arc in contrast to full expressions of the universal and existen- 
tial quantifiers, but are in analogy with full expressions of the 1-operator 
(recall 35a). However, K-cxpressions have a distinct advantage over 
a-descriptions, viz. they always designate preciscly one number; for this 
Teason precautions and restrictive rules of the sort that hedge the use of 
descriptions are not needed for K-expressions 

The formation and transformation rules comprising the syntax for a co- 
ordinate language of the present form are taken to be the same basically as 
those specified carlier for language B (scc 21 and 22) We add only the 
following: 

Additions to the rules of formation. We add ‘0', ‘” and ‘K’ to the 
stock of primitire signs, These signs arc logical signs, since they serve in 
the formulation of arithmetic (i.e. in the formulation of logical assertions 
about numbers). Thus the individual expressions ‘0”, ‘0"’, ctc., are also 
logical. (Under certain circumstances, however, a K-expression is 
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descriptive, viz when a descriptive sign occurs in its operand.) The type 
of the individual expressions includes: the individual variables, the 
constant ‘0’, certain defined constants, the expression %,’ in case Y%, is an 
individual expression, expressions of the form (Kv;)(S,) with v, an 
individual variable, and full expressions of certain functors (e.g sec D4 
and D5 below) 

Additions to the rules of transformation, The following are to be 
added to the stock of primitive sentences: 

1. (#4). 
2. (MQ)[x’=7' > x= y). 
3. (F)[F(0).(x)(Fx> Fx’) > (x) Fx]. 
4. (GF)G(Kx)(Fx) = [~(9x)(Fx). G(0)] V x) [Fx. (2)((H)[He' « 

(u)(Jlr> Ih’) > Hx] > ~ Fz).Gx]]. 
(In case usc is made of restricted universal quantifiers (see below), the 
second componcnt of the disjunction above can be written more 
simply as ‘(3x)[(z)x(Fz = 

Sentence (1) says that 0 is not the successor of any individual. Scntence 
(2) says that different individuals do not have the same successor. Scn- 
tence (3) expresses the principle of mathematical induction (cf. 37c). 
Sentence (4) serves as a definition of the K-operator and, in accordance 
with our previous discussion, says the following: (Kx)(Fx) has property 
G if and only if cither no individual has property F and 0 is G, or if there 
is an individual x such that « is F and no z smaller than x is F (in this 
connection, see T36-li and D2 below) and x is G, 

So-called restricted operators (including quantifiers) arc useful in many 
conncctions. The restriction is imparted thusly: between the operator 
and its operand there is inserted a number expression, and this number 
expression is understood to limit the domain to which the operator refers 
E.g. ‘(x)0""(Px)’ says “cvery number up through 3 (i.c. 0,1,2,3) is P”; 
again, ‘(3x)0"’’(Qx)’ says “there is a number not beyond 4 which is Q”; 
and ‘(Kx)0'"(Px)' denotes: the smallest numbcr not beyond 3 which is P, 
and 0 in casc there is no such. 

Primitive sentences for the kinds of restricted operator just exemplificd may be found in 
[Syntax E] §30, G II 7,8,9, 14. In [Syntax] Chapter | there is presented u language form | 
which employs on/y restricted operators. The only variables there are individual 
variables whose valucs are natural numbers That language form provides 4 way to 
formulate unrestricted universal propositions about numbers, viz with the help of open 
sentential formulas that ure admitted as sentences However, that language form cannot 

provide a formulation of unrestricted existential propositions. Recursive definitions are 
admissible (sce ¢ g D4 and DS below). Fach closed logical sentence , of that language 
is decidable, ic cxactly onc of 2; und ~ =; is provable and there is a (decision) procedure 
for discovering the proof Ech closed logical numerical cxpression ¥) is computable, 
ie. there is a procedure for discovering a numerical expression %, in normal form (‘0’", 
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‘D", ete) such that ®=24 is provable The language form under discussion here agrees 
with certain philosophical views sometimes called “finitism™ or “constructivism.” Ac. 
coriling to these views it is the case e.g that unrestricted existential quantifiers with 
respect to infinite domains give rise to meaningless sentences, and that predicates and 
functors ate meaningful only if there is a fixed procedure by which their applicability in 
uny concrete case can be decided 

Exercises, 1. Let R be such that R=(Ax,1a‘=1): give an informal proof (with the 
help of the four primitive sentences) that R is a progression (DY7-l) — 2. Write L-true 
sentenecs of the following forms with one of the expressions *0", "0", "0", etc, substituted 
for *z', und give informal proofs of them u) *(Kx)(Prime().Even(s))= 2", b) “(Kxy(33) 
(Gr (yur). ~ Primets))=2", ©) (Kx(1)(Gr (r2)> ~ Prime(1)= 

40b. Recursive definitions. [In a coordinate language of the form set 

forth in 40a it is possible to define arithmetical concepts quite simply, 
We give several cxamples to suggest how this cun be done. It is useful in 
this connection to permit recursive definitions of first-level predicates and 
functors, a procedure which is customary in arithmetic— especially for 
functors. 
A recursive definition comprises two sentential formulas; the first 

formula spccifies the valuc at 7cro of the functor being defined (or the truth- 

valuc at zero of the predicate being defincd), and the sccond formula 
specifics the value at x’ in terms of the valuc at x (E.g, definitions D4 and 
DS below are recursive.) 
The following list contains definitions of predicatcs for the relations 

Predecessor (*Pred"), Smaller (‘Sim’), and Greater (‘Gr’); of functors for the 
functions Sum (‘sum') and Product (‘prod’), of predicates for the properties 
Divisible (‘Div’) and Prime number (‘Prime’); and of some of the usual 
symbols. 

D40-1.  Pred(x,y) = (x'=y). 

D40-2. Sm=Pred>. (See 36b, example |.) 

D40-3. Gr=Sm '. (See D30-3.) 

D40-4. (1) swm(0,y) 
(2) sum(x',y 

40-5. (1) prod(0,y)=0: 
(2) prod(x’,y)=sun( prod(x,y),y)- 

40-6. Div(x,y) = (3u)(x=prod(y,u)). 
D407. Prim(x) = [(x40).(x 40’). (u)((w=0')V (u=x)V ~ Dir(xy0)]. 
40-8. 

sum(x,y)'. 

Exercises. 1, Give informal proofs of the following* a) *Si(1,3)'; b) ‘prod(1,3)=3'; 
©) @)[prod(1,x)=x]’; d) “(x)[prod(x, 1) =x"; ©) “(x)[Dio(x,)]’. 
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40c. Coordinate language with integers. A coordinate language similar 
to that of 40a (a coordinate language with natural numbers) can be con- 

structed with integers as the individuals. [Integers comprise the positive 
and negative whole numbers, and zcro.] As before, ‘0’ designates a certain 
basic individual, i.c. the number zero; and ‘a” designates the successor of a, 
je. the number a+. It is also convenicnt now to have a symbol for the 
predecessor of a; we agree that ‘’a’ designates the predecessor of a, i 
number a~1. In accordance with this agreement, ‘0’ denotes —1, ‘"0° 
denotes —2, ctc. 

Our previous interpretation of the K-operator for natural numbers (in 
40a) cannot be carricd over unmodified to integers. Unlike the domain of 
natural numbers, the domain of integers may provide a number with, say, 
the property P, but no smallest such number; this happens c.g. when 
there are arbitrarily “small” negative numbers with P. Let us agree that 
in cases of this sort our K-expression also denotes the number zero. Thus 
when the domain of individuals is the class of integers, ‘(Kx)(Px)’ denotes: 
the smallest integer x with property P, or zero in case either there is no 
integer with P or there is no smallest integer with ?. 

Finally, Ict us symbolize “integer a is smaller than, or cqual to, integer b” 
by ‘SimEgq(a,b)’, and agree to take ‘SmEq’ as a primitive sign. Thus the 
primitive signs of our present language form are those cstablished in 40a, 
together with ‘SmEg’. [Actually ‘SmEg’ can be treated as a defined sign; 
eg, the primitive sentence (2) below could be taken as a definition of 
‘SmEq’. However, by taking this sign to be primitive we simplify our 
formulations of the primitive sentences (3) and (4) below.] 

In place of the primitive sentences added in 40a, let us add the following 
to our regular stock (sce 22) of primitive sentences: 

La. (x)['(x')= x). 
b. (x)[('x)"=2}- 

2. (x\())[SmEq(x,y) = (F)(Fx.(u)[Fu> Fu’} > Fy)). 
3. (x)[SimEq(x,0) V SmEq(0,x)]. 
4. G)E)[G(Kx)(Fx) = ([(~ G0FOV(x)(3y)[SmEg(y,x). Fy) -G(O)] V 

(3x)[0)(SmEqi.x) > [Fy = (y=x)]).Gx])]- 
Sentence (1a) says that the predecessor of the successor of x is always 

x itself; and (1b) says that the successor of the predecessor of x is always 
x. (In short, the predecessor relation is one-one.) Scntence (2) says 
that the relation Sm£g holds between x and y if and only if y has every 
hereditary property of x (recall 36), i.e. if » is either the same as x or is 
attainable from x in finitely many steps. Scntcnce (3) says respecting 
any number that between it and 0 the relation SmEgq holds cither in one 
direction or in the other; the cffect of this primitive sentence is to restrict 
the domain of individuals to finite integers. Sentencc (4) expresses our 
earlier explanation of the K-operator respecting the domain of integers. 
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Taken together, (2) and (3) yicld a generalization of the principle of 
mathematical induction to the domain of integers; this generalization cyljg 
for mathematical induction in the usual way respecting positive integers and 
in the reverse direction respecting ncgative integers. 

With respect to the domain of integers, a recursive definition comprises 
threc sentcntial formulas—the first about 0, the second about x’ in terms 
of x with x >0, and the third about ‘x in terms of x with x<0 (c.g. definitions 
DI1, D12 and D14 below arc recursive definitions of this kind), 

The list which follows presents scveral examples of definitions TesPecting 
integers. Note that ‘opp(a)’ designates the number opposite to a, and that 
‘diff (a,b) designates the difference a—b, The remaining predicates and 
functors defined below have meanings corresponding to thcir carlier ones 
(in 40b) In DIS and DI6 we introduce the customary notations for 
several integers. 

D40-9.  Pred(x,y) = (x'=y). 
40-10. Sin(x,y) = SmEg(x,y).(x#y). 
D40-11. (1) sum(0,y)=y. 

(2) SmEq(0,x) > (sum(x’,y)=sum(x,y)')- 
(3) SmEq(x,0) > (swn('x,y)='sum(x,y))- 

40-12. (1) opp(0)=0. 
(2) SmEq(0,x) > (opp(x')='opp(x))- 
(3) SmEq(x,0) > (opp('x) = opp(x)’). 

40-13. diff(x,y)=sumn(x,opp(y)). 
D40-14, (1) prod(0,y)=0. 

(2) SmEq(0,x) > (prod(x',y)=sum(prod(x,y),y)). 
(3) SmEq(x,0) > (prod(’x,y)=diff(prod(x,y),y)): 

40-15. a. +1=0'. 
b. +2=41'. 
ce +3=+2'. 
Etc. 

D40-16. a. —1=" 
b. —2='-[. 
e —3='-2. 
Etc. 

The language form presented in this scction is used later in defining the 
concept of the dimension number (sec 46c). 

Exercises. 1. Give informal proofs for the following, using ‘Pred’ as defined in D40-9: 
a) “Pred is onc-onc™ (recull D31-11); b) “Pred has no initial member" (recall D32-8); 
c) “Pred has no terminal member" (recall 32c); d) “Pred>9 is connceted™ (recall D31-4, 
136-3); €) ‘Pred20=SmiEg’ (recall D36-2). — 2. Write L-truc sentences of the following 
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forms with one of the expressions ‘0’, ‘0 , “0”, ““0"" etc., substituted for ‘z' and give 
jnformal proofs of them (note that the K-operator now ranges over integers and not just 
natural numbers)" a) “(Ke SmEq( «,0).Gi(x,—2))= 2"; b) “(Kr)(a3 NGrlx)) =z", 0) 
(RII =prod(0,y 

40d. Real numbers. We now have at our disposal two different pro- 
cedures for introducing furthcr kinds of numbers, in particular the real 
numbers. For the sake of definiteness, let us talk here about the introduc- 

tion of real numbers. We can construct them from the natural numbers, 
or from the integers; or we can establish a fresh basis by taking the real 

numbers as the individuals of an entircly new coordinate language form. 
Consider the first procedure, that of constructing the rcal numbers on a 

previously-preparcd basis Our basis can be either the natural numbers 
given in 40a) or the integers (given in 40c); the choice here depends on 
whether we want to confine our use of the subsequent kinds of numbers to 
the positive domain, or allow their use in the whole positive and negative 
domain. In any event, the first step in the construction is to introduce 
rational numbers as pairs of natural numbers (or of integer: denote a 
rational number by an expression of the form ‘(a,b)’. And the second step 
jn the construction is to introduce real numbers as classcs or functions of 
rational numbers. (We remark parcnthetically that, once real numbers 
are in hand, complex numbers can be constructed as pairs of real numbers.) 

Concerning the step-by-step introduction of additional kinds of numbers beginning 
with the natural numbers, cf, Russell [Introduction] Chap. 7; Waismann [Math, 

Thought]; [Syntax] §39; Cooley [Logic] §37 

Consider now the second procedure, which is to construct a language 
form in which the real numbers entcr as individuals. This procedure 
utilizes the following additional primitive signs: ‘O° and ‘I’ (with their 
familiar signification), the functors ‘sum’ and ‘prod’, and the two-place 
predicate ‘Sim’ (the relation Smaller-than). The construction itsclf is 
similar to that in 45 respecting Tarski’s axiom system for rcal numbers. 
(Since here only the real numbers appcar as individuals, Tarski’s predicate 
‘R’ is superfluous.) Sixteen primitive sentences are added, viz. all axioms 
of 45 with the cxccption of A5, Al2, AIO and Al8. (Of course, all free 
variables in these primitive sentences arc covercd by universal quantifiers; 
and further, the components involving ‘R’ arc struck out of AI5.) 
Expressions for real numbers are of special importance in the construc- 

tion of a /anguage of physics. This construction first sees the association 
with cach space-time point of four real numbers as its coordinates—three 

of them as spatial coordinates, one as a temporal coordinate. Thercafter 
the designation of properties of space-time points, or of relations between 
such points, or of physical state-magnitudes, is accomplished with the help 
of predicates and functors having one or more quadruples of real number 
expressions as their argument-expressions (cf. 41c). 
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41. QUANTITATIVE CONCEPTS 

41a. Quantitative concepts in thing languages. Progress in the differen, 
arcas of science discloses an ever-increasing use of quantitative numerica, 
concepts in the description of things and processes. This quantitative 
method of description has essential advantages over non-quantitative o; 
purcly qualitative methods. First, it permits a more exact description of 
the scparate facts. And second, it makes possible the claboration of 
decidedly more effective gencral laws expressing connections between the 
values of various quantitative concepts with the help of mathematical 
functions. 

Quantitative concepts, e.g. length, weight, temperature, price, degree of 
attention, etc., are also called “‘mcasurable magnitudes” because the pro- 
cedure for establishing thcir value is that of measurement. Such concepts 
are most conveniently designated by mcans of functors; their value cxpres- 
sions arc considered of greatest general uscfulncss when thcy are real 

number expressions. (In certain circumstances it is possible to simplify 
the language form by using expressions for rational numbers, or even 
integers, instead of rcal numbers; however, this results in important limita- 
tions on the construction of laws.) 

Let us first discuss the use of quantitative concepts in thing languages; 
later (in 41¢) we shall discuss their usc in coordinate languages. 

For the thing languages, the language forms cxplained in 39 are of chief 
importance. In these forms, functors have as their argument-expressions 
mostly cxpressions for things, for thing slices, and for space-time points, 
Now the most important kind of measurable magnitudes—of frequent 
occurrence not only in physics but in any branch of cmpirical science 
(including psychology and social scicnce) that operates quantitatively—are 
the magnitudes which ascribe a real number to a definite space region at a 
definite time (e.g. a thing slice). Examples of magnitudcs that arc repre- 

scntable in this form are: temperaturc, cnergy, mass, weight, intelligence, 
performance in mathematics (or in chess, tennis, etc.), life expectancy, and 
so on. If a measurement or a battery of experimental tests indicates that 
today Mr. Smith has such and such a weight, or such and such a blood 
pressure, or can jump so and so high, or can multiply so and so fast, or can 
concentrate to such and such a degree, etc., the result is expressed in each 
case by ascribing to a thing slice of Mr. Smith a definite number as value of 
some particular measurable magnitude. 

41b. Formulation of Iaws. In the terminology customarily employed by 
physicists (a terminology, by the way, which is not entirely clear) measurable 
magnitudes like length, pressure, current intensity, etc., are sometimes 
termed “variables”. According to the terminology of modern logic, 
however, it is signs and nor thcir designata that are divided into variables 
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and constants. Each concept, therefore, is to be designated by a constant, 
not a variable; and in particular, measurable magnitudes are to be desig- 
nated by functor constants. 

Nevertheless, physical laws are intended to refer to arbitrary space-time 
ints or regions, hence (at least when completcly formulated) must exhibit 

variables as well as functor constants. It is usual in physics, however, to 
give not the complete formulation of a physical law, but an abbreviated 

formulation in which the variables have been omitted. Also the specific 
conditions under which the law holds are ordinarily omitted from this 
abbreviated symbolic formulation (at most, these conditions are explained 
jn the verbal text accompanying the formulation). Consider c.g. the so- 
called perfect gas law. The usual formulation of this law in physics 
is ‘p-V=R-T’. If we usc ‘P’ to designate the conditions which a system x 
at time / (a thing slice of a body of gas) must satisfy before the perfect gas 
law applics to it, then the complete formulation of this law runs ‘(x)(1) 
[Pxt> (p(x,1) Vx,t)= R(x)-T(x,))]’.. The full form of the law makes 
clear that ‘p’, ‘V’ and ‘7” are functois, and indced constants (viz. for pres- 
sure, volume and temperature of the body x at time r respectively), and 
‘R’ is a functor (for a characteristic of the body x independent of time). 
Of course, the usual abbreviated formulation has important advantages; 
and it is well to note that the suppression of variables here bears some 
analogy to our own practice of writing predicates without argument- 
expressions. The functor charactcr of the symbols that survive in the 
abbreviation should, however, not be overlooked. 

‘The preceding paragraph suggests onc kind of completion of the abbreviated formula- 
tions found in physics. For another kind, in which c.g the signs ‘p’, *V", etc, are taken 
as variables and their interpretation as values (for pressure, volume, ctc , respectively) is 
incorporated into the anteccdent of the completed law, see Carnap [Foundations] §23, 
Axiom Al. 

Another question deserves attention here. Values of a measurable 
magnitude are expressed in terms of some twit of measure (e.g. a centimeter 
or an inch, a second or a day, a shilling or a dollar); where and how should 
this unit be specified? Ordinary practice here is to add to the number 
expression for the value of the magnitude a sign indicating the unit of 
measure, c.g. “the Iength of rod a is 5cm”, “the price of a is $5”. Strictly 
speaking, however, the specification of the unit is part of the definition of 
the functor; the value of the functor is always a pure number. Should an 
explicit indication of the unit be wanted in the symbolization of the measur- 
able magnitude (perhaps because the same body of text makes references 
to various units), this indication must be achieved by way of an inseparable 
part of the functor sign, e.g. by a subscript. For example, in the matter of 
length we might write “/g,,(a)=5" or “/gin.4(@)=2"; cach of ‘/g,,,, and 
‘gins. i8 Lo be regarded as one sign, and each designates a different magni- 
tude. 
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Examples. We propose to translate cach of the following two sentences into the 
various language forms of 39 “Peter was (or 1s, or will be) at onc time heavier than, 
Herbert", 2. “The energy of an isolated system remains constant.” Our translation, 
Utilize the Following additional signs (with variations in type, according to the arguments) 
a Functors—'wy" designates weight, ‘ewer’ designates energy, b  Predicates—G,> 
designates Gireater (respecting real numbers; ef 40d), */va/" designates Isolated System, 

Translations into language forms 1B and IC (language form 1A is not appro. 
‘ate for these examples) 1 °(4x)(35)[SliCx, pe). Sli xyhe)- Sinw (\43).Gr(w1lx),419)] — 

2 xIO MZ). Sli.) - Slil2,v) > (energ(s)= energ(z))|" 
Translations into language forms 11Au and 11Be (the change into form 8 is anal 

to that illustrated in the examples of 39¢)" 1 “(3.x35)[Pe(1). Me(y).Sinn(a,yy_ 
Gi(wid WI) 2 CM MeI al). Fa Lz > (ener es )=enery(z)) f° 

‘Translations into language orm 1116 (language form Mle is not appropriate for 
these examples. the change into form Illy is analogous to that of the examples in 394). 
1 (SPN). Me(G) Sim (F.G).Gr(wi(P)wKG))P 2. NYE NG)UaKN).NCF), 
N(G) > (energ(t)=energ(G)))". 

Exercises. 1. Translate the following into language forms 1B, IC, I1Aq, IIBe, IIB 
a) “At no time is a thing heavier than itself", b) “If at one time Peter was heavier than 
Herbert and at a later time Herbert was heavier than Peter, then at some intermediate 
time they had the same weight”, c) “If the energy of x remains constant, then .x is an isola. 
ted system” 

41c. Quant e concepts in coordinate languages. Thc usc of measur- 

able magnitudes in coordinate languages docs not differ cssentially from 
their usc in thing languages. Thus cg. magnitudes used in coordinate 
languages are also designated by functors. Here, however, the form and 
type of argument-cxpressions are different. A quadruple of rcal numbers 
corresponds to a space-time point; the question what type thesc number 
expressions arc depends on the particular language form (see 40d). Slices 
of things, of thing parts, and of other systems are representable as classes 
of space-time points. Such representation is suited to language form 111 of 
39d, and hence here there arc further alternative subforms analogous to 
the special forms «, B, 7 
Of these, the « version of language form II may be the most useful. In 

this form, things and other physical systems, as well as their slices, are 
represented us classcs of space-time points, i.c. are denoted by predicates 
which take quadruples of real number expressions as their argument- 
expressions The functors of measurable magnitudes then have as their 
argument-expressions either predicates of the sort just described or clse 
quadruples of the sort mentioned, according as the values of the magnitudes 
in question are counted as ascribed to a space-time region or a space-time 
point. It is convenient to admit in a coordinate language also compound 
expressions as value-expressions of functors—these compound expressions 
consisting of several real number expressions. While the valucs of certain 
physical magnitudes are real numbers (such magnitudes arc called “scalar 
magnitudes”), certain others such as space vectors have values that are 
triples of rcal numbers, and still others such as space-time vectors have 
values that are quadruples of rcal numbers, cte. 
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42. THE AXIOMATIC METHOD 

42a. Axioms and theorems. By an axiom system (abbreviation: AS) we 
ynderstand the representation of a theory in such a way that ceitain sen- 
tences of this theory (the axioms) are placed at the beginning, and from 
them further sentences (the theorems) are derived by means of logical 

deduction. 
There isa traditional view of an AS—current in Euclid’s time, and con- 

tinuing into our own—that requires its axioms to be self-evident, ie. 
immcdiately clear to the intuition and hence in no need of proof. (Even 
today, common usage tends to attribute this meaning to the word “axiom”.) 
The modern conception of an AS does not include this requirement; 
arbitrary sentcnccs may be sclectcd as axioms. 

For the formulation of an AS we nccd to choose or construct a language 
L, the so-called husic language of the AS. Usually this basic language 
contains only logical signs. The axioms and thcorems of the AS contain 
certain constants not occurring in language L, called the axiomatic constants 
of the AS Some of them arc given without definitions, they are called the 
axiomatic primitive constants of the AS All other axiomatic constants are 

introduced by definitions on the basis of the primitives. The language L’ 
obtained from the basic language L by adding the axiomatic constants is 
called the axiomatic language. 

In the modern conccption of an AS, the derivations of theorems must be 
a matter of purely logical deduction. Nothing may be referred to the 
intuition—this in contradistinction to derivations found in Euclid’s system 
—and no knowledge of the objects of the theory may be utilized except that 
which the axioms pronounce Since derivation in this sense is purely 
logical, it is open to formalization. Eg. we may have a syntactical system 
for L, specifying primitive sentences in L and rulcs of inference for L, and 
may cxtcnd this system to a syntactical system for L’ with the axioms as 
additional primitive sentences; the theorems of the AS are then those 
sentenccs which arc provable in L’ but not in L. 

Two ways of trenting an AS are now ut hand 1. The way just described, here the 
axioms are counted as primitive sentences, and the icone are obtained by proofs, i.e. 
without premisscs 2. The axioms are not counted us primilive sentences, and the 

theorems are obtained by derivations in which the axioms appear us premisses There is 
no essential difference between these treatments, beyond that of presentation A third 
way of treating an AS is discussed below (in the first of the two notes concluding 42d) 

42b. Formalization and symbolization; interpretations and models. In 
connection with the construction of the language L’ in which an AS is 
formulated, the following additional procedures may be applicd. The 
language L’ can be formalized, ic. a syntactical system with explicit formal 
tules for L’ may be constructed as indicated above; sec 21, 22. Also, the 



172 CONSTRUCTION OF LANGUAGES 

language L’ can be symbolized, ic. artificial symbols used in place of the 
words of the natusal language. 

Neither of these procedures is absolutely required. And indeed, neither 
of them is used in the majority of published presentations of ASs, includin, 
those conceived in the modern sense. For the most part, these ASs are 
formulated in words, and rulcs of transformation are not spccified, The 
tules of the basic language arc, so to speak, tacitly presupposed, i.e. ways of 
deducing common in the word language arc usually assumed to be familiar, 
Further, there is tacitly presupposed a particular interpretation of the basic 
language L., viz. the usual interpretation of the logical words of the word 
language; only the interpretation of the axiomatic constants in L’ jg 
deliberatcly kept open. 

It is also to be observed that the two procedures of formalization and 
symbolization described above are independent of cach other. A word 
language can be formalized by introducing transformation rulcs phrased 
with the logical words - every”, “some”, etc., instead 
of the symbols corresponding to these words. On the other hand, all or 
part of the language can be symbolized without also formalizing it, ie 
without explicitly laying down syntactical transformation rules; our treat- 
ment of language A in Chapter A was of this nature. 
When an AS is stated, the basic language used is assumcd to be under- 

stood. Usually its interpretation is tacitly presupposed, only in special 
cases is it explicitly specified, e.g. by scmantical rules, On the other hand, 
the interpretation of the axiomatic constants is not supposed to be fixed, 
The author of an AS often spccifics a certain interpretation, i c., an assign- 
ment of meanings to the axiomatic primitives, based on a specified domain 
D of individuals. He usually docs this informally; it may also be done ina 
semantical system by rules of designation (cf. 25b). In cither case, the 
statement of the interpretation is not to be regarded as part of the descrip- 
tion of the AS. When an interpretation of the primitives is given, the 
remaining axiomatic constants straightway receive an_ interpretation 
through their definitions, and thereupon all sentences of L’ havc an inter- 
pretation, including the axioms and theorems. An interpretation of an 
AS is called a truc interpretation if under it all axioms are true; and, more- 
over, an L-true interpretation, if all axioms arc L-truc. One of the cssential 
characteristics of axiomatization in the modern sensc consists in the fact 
that the deduction of the theorems makcs no usc of any interpretation of 
the axiomatic constants, Each thcorem is L-implicd by the axioms, 
Therefoic under any true interpretation all theorems are true; and under 
any L-truc interpretation they arc L-true. In this way, the same AS may 
serve as a represcntation of many different thcories. 

We say an interpretation of an AS is a /ogical interpretation provided all 
axiomatic primitive constants are interpreted as logical constants, otherwise 
a descriptive interpretation. Thus an interpretation of an AS is a descriptive 
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interpretation provided at least one axiomatic primitive is interpreted as a 
descriptive constant 

By a model (more specifically, a logical or mathcmatical modcl) for the 
axiomatic primitive constants of a given AS with respect to a given domain 
p of individuals we mean a value assignment VA (25a) to these primitives 
such that both D and VA are specificd without the use of descriptive con- 
stants. A modcl is said to be a model of the AS provided it satisfies all the 
axioms. 2 may, for example, be the class of numbers of a certain kind, or 
of ordered k-tuples of such numbers, or the like VA assigns to cach 
primitive an extension of the corresponding type with respect to D, c.g., to 
an individual constant an element of D, to a one-placc predicate of first 
level a subclass of D, cte [The study of models is simpler than that of 
interpretations, since it deals with cxtensions, not intensions, c.g., with 
classes, nol properties Logical interpretations are cssentially the same as 
models. Therefore, if we arc only intercsted in possible applications of 
a given AS within the ficld of mathematics, the investigation of modcls 
js sufficient, For this reason, some mathematical books usc the terms 
“interpretation” and “‘model” as synonyms. However, if we are interested 
inthe usc of a given AS in ficlds of empirical science, c.g., physics, economics, 
etc, or in the construction of an AS as a formal representation of a given 
scientific theory, then we have to consider descriptive interpretations.]} 
According to our definition of L-implication (6a), the following holds: 

(1) The sentence &, is L-implicd by one or more other sentences if and 
only if every modcl satisfying these sentences satisfies S; also, 

(2) If we can construct a model satisfying the other sentences but not &), 
we have shown that <; is not L-implicd by those sentences. 

42c. Consistency, completeness, monomorphism. Now let us explain 
certain propertics of ASs which are important in the critical cxamination 
of any given AS. An AS is said to be inconsistent provided that among its 
theorems is one of the form S, and another of the form ~G,._ An AS is 
said to be consistent provided it is not inconsistent. In view of T6-15, any 
sentence of the language is derivable from ©, and ~G, together; the 
theorems of an inconsistent AS therefore include all the sentences of the 
language L’, and the AS in consequence is trivial and useless for practical 
purposes. Consistency is thus an obvious requisite of any non-trivial AS. 
The consistency ot any particular AS is established by constructing a 
model of the AS. 
An AS is said to be (deductively) complete provided it is the case for any 

sentence S; in L’ that either S; itself or ~ S, isa theorem. The incomplcte- 
ness of a given AS can, according to (2) above, be shown by constructing 
two models M, and M, of the AS and a sentence S, in L’ such that M, 
satisfies S; and Mz satisfies ~S;. Supposc the language L’ has means of 
expression sufficient to permit a formulation of the arithmetic of natural 
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numbers up through general statements about numbers; then it follows 
from Gédel’s result (sec the end of 26) that the AS cannot be complete 
For this reason the concept of completeness is frequently inapplicable, ang 
the weaker concept of monomorphism (to be defined below) becomes of 
some interest because it represents a kind of completeness 

An AS is said to be monomorphic (or categorical) provided it is consistent 
and all its models (with respect to a given domain of individuals for which 
it has models) are isomorphic to each other. and to be polymorphic in case 
it has non-isomorphic modcls. Isomorphism of modcls being a more 
comprchensive concept than isomorphism of classes or relations (this last 
was defined earlier, in 19), an cxplanation of the concept is in order here 
Suppose a modcl M of an AS consists of the extensions By, Bs, .., B 
corresponding respectively to the 2 axiomatic primitive constants of the AS, 
and suppose that another such model M’ similarly consists of B,’, By’, . 
B,'. We say that M is isomorphic to M’ provided there is a correlator 
betwcen the individuals of M and thosc of M’ and, on the basis of this 
correlator, B, is isomorphic (in the sense of 19) to 8,’ for each p from | to n, 

An AS that is monomorphic thus specifics all the structural properties of 
its possible models; it is this sense of completeness that can be imputed toa 
monomorphic AS. 

Examples of monome phic ASs Peano’s AS for the natural numbers (sce 44: all models 
ol this AS are progressions and hence, by T37-14. isomorphic to one unother), Tarski's 
AS for the real numbers (sce 45, ull moilels of this AS are essentially continuous series 
having the structure Con/Serq und hence, by T38-Id. isomorphic to one another); and 
several modern ASs for Fuclidean geometry, ¢ g Hilbert’s (in his Aaundations of geometry) 
and E Roth's (sce 47) 

Consider an AS containing n axioms 4,, . A, If neither the axiom 
A, nor its negation is deducible from the remaining axioms, 4; is said to be 
independent in the AS — This can be shown by constructing a model of the 
AS and another model which satisfies the other axioms but not A;. The 
AS itself is called independent provided eve y axiom of it is independent in it. 

Exumpie. To illustrate the concepts just «lefined, we consider an extremely simple AS, 
As the axiomatic prinutive constants we tke three one-place first-level predicates *P’, 
“QR Thercarc twoaxioms Al is (\)(P\ > ~Qv)'. A218 'C(R\ 2 PA) Example 
of a theorem *(v1(R1 > ~Qx) To give an example of an interpretation, we take as 
the domain /) the muterial bodies of a specified! space-time region, and as the designata of 
the predicates *P*, *Q° and *R* the properties Red, Blue, and Cheiry, respectively, This 
is a true but not L-truc interpretation, since under it the two axioms are true but not L- 
true This interpretation is descriptive since the three properties ussigncil are non-logical, 
For the construction of models. we shall use the domain D’ of natural numbers Let My 
be the model which assigns to *P* the class {1.3,8} (1¢ , the class whose clements are I, 3, 
and 8, cl 32e), to *Q" {4.10.15}, and to “R’ {1,8! Obviously it can be proved in a purely 
logical way that this model satisfies both axioms, thereby it is shown thnt the AS is con 
sistent Let the model Mz be like Mf) except that *R’ has the extension {3} instead of 
{1,8}, Mz likewise satisfies both axioms Since the two classes just mentioned are nor 
isomorphic, the two models are non-isomorphic, and thus the AS is polymorphic. Now 
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ye can casily show that the AS is not complete Let 2; be the sentence *(31)(\)(Rx= 
(r=))". which says in effect that cxuctly one mdividual has the property R (35a) M2 

satisfies 2), but My docs not Therefore the AS is incomplete 

42d. The explicit concept. Given an AS with » axiomatic primitive 
constants a),, @),, +. @,, it can be transformed into a statement about the 

n primitive concepts. The transformation is accomplished as follows 
First, we climinate all defincd axiomatic constants. Next, we form in L’ 

the conjunction &; of all the axioms (cach axiom component of S; is a 
sentence, if the initial form of an axiom is that of an open formula, this 
axiom is first converted into a sentence by prefixing a universal quantifier 
for each free variable of the axiom). Noting that, besides logical constants 
and variables, only the » primitive constants occur in S,, we now can 
abbreviate S; into a sentence of the form 4(4;,.0),... ,4),). The sign a, is 
an n-place predicate called the explicit predicate of the AS, and the n-place 
attribute designated by a, is called the explicit concept of the AS. This 
explicit concept is an n-place attribute which holds for an n-tuple of con- 
cepts if and only if this ntuple of concepts satisfies the AS. 

The definition of a, can cvidently be constructed in the basic language L 
in the form a4(0,,,0%),.+ +5B;,)= S;, where S, is obtaincd from &, by 1eplacing 

each occurrence of the primitive constant a,, in S; by a variable %, having 

the same type, this for each p from | ton, Since &, consists entirely of 
signs of the basic language L (all axiomatic constants having been cxcluded), 
it appears that a, must be a constant of the basic language L. And if (as is 
commonly the casc) the basic language is interpreted as a logical language, 
a, is in fact a logical constant. 

For an cxumple of a definition of an explicit concept, see N2* in d4b, it is shown there 

that the explicit concept of the Peano AS for natural numbers (formuluted with a single 
primitive) is the class of progressions (D37-1), Furthet examples of explicit predicates 

of ASs °Z/™ in 43b, *Hauvd" in 460 

If we similarly transform a theorem &, of the AS—vir. if we bind its free 
variables, climinatc its defined signs, replace its axiomatic primitive con- 
stants by the corresponding variables--there results an open sentential 
formula Sy) Now &, is derivable from the above S, in L’, Hence the 
universal sentence (v;,)(W,,)...(0,,)[S;2 Se] is provable in L, and is logi- 

cally truc under the usual interpretation of this language, 

In the note at the cnd of 42a mention was made of two ways to formulate an AS To 
these two presentations we now add a third, viz the axioms and theorems of the AS are 
not prescnted us sentences in I *. but as oper sentential formulas in L constructed in the 
fashion indicated above In place of the derivation (or of the proof. as may be) of @ 
theorem in I ‘ there now appears a proof in L of the universal conditional just specified 
This mode of presentation of the AS uses no signs except those of the basic lunguage L 
In place of the axiomatic primitive constants in L’ we now have axiomatic variables in L. 
In place of the interpretation of the uninterpreted axiomatic constants we now have a sub- 
stitution of » constants, which represent the interpretation, for the » axiomatic variables, 
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Concerning the axiomatic method see Milbert, “1as axiomatische Denken", Mayp 
Ann . 78, 405 IF, 1918, Pracnkel [Einlcitung] $18 (where additional copious references 
may be found), Russell [Principles], Wooilger [Biology] and |Thcory construction] (these 
two are especitilly concerned with applications of the method in the empirical sciences) 
Tarski [1 ogic] Chup V1 “Deductive method”. Copi [Logic] Chap V1; Wilder [Founda 
tions} Chaps | and Il, Carnap [Foundations] 

42e. Concerning the axiom systems (ASs) in Part Two of this hook. Ip 
the chapters which follow we present various ASs__ Our presentation makes 
use of the symbolic languages explained in Part One of the book, In this 
connection it is possible to utilize the syntactical rules for language B 
explaincd carlicr {in 21 and 22); such an AS is then not only symbolized, 
but formalized as well. The logical constants of the basic language are 
presumed known, only the axiomatic primitive constants are spccified 
definitions being constructed for the remaining axiomatic constants, iy 

For certain ASs some thcorems arc given by way of illustration. [These 

theorems belong to the object language and hence are to be carefully 
distinguished from the theorems established in Part One, which belong to 
the mctalanguage- viz. either to semantics or to syntax.] 

The ASs are arranged in four fields on the basis of their specificd inter- 
pretations, of coursc, the impression should not be gained from this that 
the specificd interpretation of an AS is the only one possible, 

In the case of many axioms, two formulations are given: a formulation 
marked ‘A’, which belongs to the simple language A; and a formulation 
marked ‘C’, which belongs to the extended language C. If neither of the 
marks ‘A’ and ‘C’ appcars, the formulation belongs to language A. A 

few uxioms are formulated only in language C, since the formulation in A 
would be tedious. 

For the sake of brevity, universal quantifiers which refer to the whole 
formula are omitted from axioms and thcorems. 

The order of appearance of the various ASs is not that of increasing 
difficulty, but follows the order of the four ficlds, It is therefore advisable 
for the reader wishing to cxaminc systems in formulation C that he choose 
them in accordance with the necessary prerequisites from Chapter C, viz. 
44a and 46a can be read after the study of 32, 47 and Sla after 33; 52a and 
b, and 53a after 35; 53b and 54a and b after 36; 44b, 46b and 51b aftcr 37; 

and 45, 48a and b and c, and 52c after 38. In 46c use is made of the co- 
ordinate language explained in 40; and 48d, 49 and 50 utilize several logical 
concepts introduced in 46. 



Chapter E 

Axiom systems (ASs) for set theory and arithmetic 

43. AS FOR SET THEORY 

The following AS is a modification of Fraenkel's system ([Grundlegung]; 
see (Einleitung] §16 and [Set Theory]) which in turn is based on the system 

of Ernst Zermelo (Math. Annalen, 65, 1908). (Axiom A9 was proposed 
later by Zermelo, Fund. Math., 16, 1930.) In Fracnkel’s system the 
following is the case: (1) sets are not classes, but individuals; (2) every 
element of a set is itself a set; (3) there are no individuals other than scts, 

Our modification of this system consists in retaining (1) and (2), but abolish- 
ing (3); the modification permits a clearcr formulation of the axiom of 
restriction (axiom A10 in 43b below). 
A set in set theory is, in practicc, essentially the same as a class in logic. 

The logical rulcs for the two concepts differ, however, sincc in the AS now 
to be considered (as well as in the majority of ASs of set theory) no distinc- 
tions of type are made between scts’ the same variables (e.g. ‘x’, ‘y’, etc.) 
are used for sets, for scts of sets, etc. This is the meaning of statement (1) 
above that sets are individuals of the system. Somctimes we also spcak of 
a property of sets (notice e.g. the variable ‘F” in AS); in this connection it is 
to be noted that such a property of sets does no/ necessarily correspond to 
another set (say, the sct of those sets having the property in question)— 
the question whether a set of a certain kind exists is to be settled in each case 
solely by appeal to the axioms Observe, finally, that our axioms are for 

the most part existence statements; thcy assert that under certain circum- 

stances there is a set which salisfics certain conditions. 

Among other ASs of sct theory are those of J von Neumann, “Eine Axiomatisicrung 
der Mengenlchre™, Jom reine n. any Math 154, 1925, and “Dic Axiomatisierung der 
Mengenlichre™, Math Zeitschr. 27, 1928, P. Bernays, “A system of axiomatic sct theory”, 
Jow. Svmbolic Logie 2, 1937, and subscquent volumes, and K Gédel, “The consistency 
of the axiom of choice, cte *, Aymaly of Mathematics Sindies, No 3, Princcton, 1940 
A survey of the various forms of ASs for sct theory is given in’ Hao Wang and R 
McNaughton, Les s3fémes axiomatiqnes de la théorie des ensembles. Pas is and Louvain, 
1953 

43a. The Zermelo-Fraenkel AS. This AS features a single primitive 
sign, the expression ‘Exy" may be read “The sct x is an element of the 
set y’’ (the customary notation is ‘x ey’). The axioms and definitions here 
and in 43b and 43c are formulated only in language A (because of the 

177 
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transformation to be described later, in 43c) The AS can be read after 
the study of Chapter A. 

Scts are the members of relation E° 

Di. Sx = mem(E)x. 

Subsct (analogous to subclass): 

D2. Ss(x,y) = Sx.Sy.(z)(Ezx > Ezy). 

Scts with the same elements arc identical: 

Al. Ss(x,p).Ss(yx) > (x=). 
A set x is a pair set comprising y and z provided y and z are the only 

clements of x: 

D3. Prs(x,v,z) = Sy. Sz.(u)(Eux = (w=y)V(u=2)). 

Existence of a pair set comprising two given sets: 

A2  Sy.Sz.(y#2) > (3x)Pro(x,y,2)- 
A set x is a (the) union set of y provided the clements of x arc the clement 

of the elements of y: 

D4. Us(x,v) = Sx. Sy.(u)[Eux = (32)(Euz.£zy)). 

Existence of a union set of a given set: 

AB. Sy > (3x)Us(x,)). 
iy sct x is a (the) power set of y provided the clements of x are the subsets 

of y: 

DS. Ps(x,y) = Sy.(u)[Eux = Ss(u,y)]. 

Existence of a power set: 

Ad. Sy > (3x)Ps(x,)). 

Axiom of comprehension (in simple form; Fraenkel’s axiom V). Given 
any sct y and any property F, there exists a comprchension set x of y 
respecting F, ie a sct x whose clements arc those clements of y that have 
property F* 

AS. (y)(F)[Sy > (ax) [Sx.(u)(Eux = Euy. Fu)]]. 
A set x is a selection set for y provided x is a subsct of a (the) union set of 

gens x has exactly onc element in common with each set that is an clement 
of y. 

D6. Sis(x.y) = (aw)(Us(,) . Ss(x)) « (2)[Ezy > (au) (v)(Evz . Bex = 

(=u). 
Axiom of choice (or selection). If y is a set whose elements are non- 

empty and mutually exclusive, then there is at Icast one selection set for y: 

AG. Sy. (z)(Ezy > (3u)Euz). (v)(w)(w) [Evy . Ewy. Eur. Euw > (v=w)] > 
(3x)Sis(x,y). 
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Set x is a (the) unit sct of y: 

p7. Uts(x,y) = Prs(x,y,7). 

Axiom of infinity. Axiom A7 below says there is a set z such that: (1) 
every empty set belongs to z, and (2) if v belongs to z, then so does every 
unit set of v also. It is a consequence of the other axioms that, if there is 
any set, then there is cxactly one empty set and that for each set there is 

exactly one unit sct; hence A7 guarantces a set z containing a progression 
of elements, viz. the empty set, the unit set of the cmpty set, the unit set of 

this last, ete Hence z is an infinite set. 

AT. (32)[Sz-()[Sy. ~(ax)(Exy) > Eyz] .(v)(w)(Evz. Uts(w,v) > Ewz)] 

Axiom of replacement (A8): Given any set x and any function from sets 
to sets, there exists a set y comprising thosc clements which the function 

associatcs with the elements of x. (In the present system we designate’such 
set functions not by functors, but by two-place predicates for one-many 

relations (the variable ‘K’)). 

AB. (x)(K)[Sx.(v)()(Kew > Sv). (W)(v)(w)(Kaw. Kew > (u=v)) > 
(ay) [Sy-(e)(Eey = (3)(Ewx. Kew))]]. 

Axiom of regularity (A9): For any non-cmpty set x, there is an element y 
of x such that y and x have no element in common: 

Ad. Eux > (3y)[Eyx. ~(3z)(Ezy. Ezx)]. 

With the help of this axiom (which was proposed by Zermelo in 1930) it 
can be shown that the relation E is irreflexive (i.c , no set is an element of 
itself) and asymmetric (i.c., no two sets arc clements of each other). 

43b. The axiom of restriction. It can casily be seen that the axioms in 
43a Icave open certain questions concerning the existence of sets. Therce~ 
fore Fracnkel considered a further axiom which should restrict the system 
of sets ‘as much as possible under the previous axioms. He formulated 
tentatively this axiom of restriction (“Axiom der Beschrankthcit”) as 
follows © sets exist beyond those which are required by the previous 
axioms”. He remarked, however, that it was extremely doubtful whether 
this or any similar axiom was meaningful. For this reason he did not 
include an axiom of this kind in his AS. 

It will now be shown that Fraenkel’s doubts were not justificd and that 
an axiom of the kind he intended can be stated in an unobjcctionable form. 
The above-mentioned formulation of the axiom contains a reference to the 
previous axioms. Taken literally, such a reference can be formulated only 
inthe metalanguage However, this difficulty can be overcome by allowing 
the ncw axiom to contain an open sentential formula that corresponds to the 
conjunction of the previous axioms, but with a variable ‘H’ in place of 
the primitive axiomatic constant ‘E’. Then the axiom can be formulated 
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in the symbolic object language. To avoid writing out this long formuly 
we shall make usc of the predicate of second level, ‘ZF’, to be defined a 
the explicit predicate (42d) for the Zermclo-Fraenkcl AS or, more specifi. 
cally, for the seven axioms Al, A3, A4, A6, A7, A8, and AQ of 43a, (We 
include here Zermelo’s axiom AQ although it did not belong to Fraenkers 
AS; on the other hand, we omit A2 and AS because they are redundant, ie, 
derivable from the other axioms.) Then ‘ZF(E)’ is an abbreviation for the 
conjunction of the seven axioms, and ‘ZF(H)' is an abbreviation for the 
corresponding open sentential formula. The definition of ‘ZF" is readily 
obtained by the procedure outlined in 42d; in accordance with this pro- 
cedure, ‘E” is replaced by the variable ‘H". The definition being very long, 
we give only the beginning of it here: 

DB. ZF(H) = (x)(y)[mem(H)x.mem(H)y . (2)(Uzx = Hzy) > (x=), 
(y)[mem(I)y > (3x)(mem(I1)(x).(u)[Eux, ctc. 

Now the meaning of Fraenkcl’s axiom is this: “For the system of sets 
ordered by the relation E, there is no subsystem of a different structure (i.e, 
not isomorphic to the original system) which likewise fulfills the previous 
axioms”. Thus, in terms of the explicit predicate ‘ZF’, the axiom of 
restriction (A10) can now be formulated in this way’ “Every subrelation 
U of E with property ZF is isomorphic to E”. (Our statement of Ald 
makes use of ‘/s,'; for this symbol, recall D19-5.) 

A10. (H)[(x)(»)(Hxy> Exy).ZF(H)> Is,(H.E)]- 

If toa given polymorphic AS (recall 42c) an axiom of this form, containing 
the explicit predicate with respect to the AS, is added, the cffect is to 
restrict the admitted model structurcs to the minimal structures (ie., those 
which have no other admittcd structures as parts). Thercfore we call 
axioms of this kind “‘minimal-structure axioms”. This is onc of four kinds 
of so-called cxtremal axioms, whose nature and general method of applica- 
tion is explained in Carnap-Bachmann [Extrem]. The addition of an 
extremal axiom to a given polymorphic AS often yields a monomorphic (or 
categorical) AS (42c). Whcther the addition of A10 has this result for the 
AS now under consideration is not known. But the result is obtained by 
each of the following axioms: by the axiom A4* in Pcano’s AS in the form 
44b, when reformulated as a minimal-structure axiom (sce [Extrem.] p. 
179); and by Hilbert's axioms of completencss in his AS of Euclidean 
gcometry and in his AS for real numbers (see the reference in 45), each 
reformulated as a so-called maximum-model axiom 

43c. A modified version of the AS in an elementary basic language. The 
AS statcd in 43a makes usc of predicate variables, viz. ‘F’ in AS and ‘K’ in 
A8. For certain purposcs, however, it seems desirable to have an AS for 
set theory with a more clementary basic language (42a) containing only 
individual variables but no predicate variables. Espccially is this so if set 
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theory is constructed for the purpose of serving as the logical theory of 
abstract concepts (classes, relations, functions, etc.), for then we should 
avoid a basic language that already contains a logic of classes, etc. 

Let L; be a basic language with individual variables as the only variables; 
the primitive constants and the defined logical constants may be those of 
language A (as far as their definitions do not make use of variables other 
than individual variables). Let L,’ be obtained from L; by adding the 
axiomatic primitive predicate ‘E’ Then we take instead of the onc axiom 
AS an infinite class of axioms A5* containing just those sentences of the 
language L,’ which result from AS by deleting the quantifier ‘(F)’ and 
substituting for ‘Fu’ any sentential formula of the language L,' in accordance 
with the rules for formula substitution (see 12c). (According to thesc rules, 
the formula to be substituted must not contain ‘u’ in a quantificr and must 
not contain ‘x’ or ‘y’, If the formula contains still other variables as free 
variables, they must be bound by universal quantifiers placed at the be- 
ginning of the axiom) Analogously, instead of the axiom A8 we take an 
infinite class of axioms A8* obtained by deleting ‘(K)’ and making any 

formula substitution for ‘Kew". (Here, the substitutum must not contain ‘v’ 
or‘w’ in a quantifier and must not contain ‘a’, ‘y’, or‘u’) Each of the axiom 
classes AS* and A8* could, of course, be specified by an axiom schema 
inthe metalangnage (analogous to the primitive sentence schemata in 22a), 

It should be noticed that the class of axioms A5*, although infinite, is 
weaker than the onc axiom AS. Thc latter refers, by thc use of the variable 
‘F’, to all properties of sets without regard to expressibility in any given 
language, while the axioms of the class AS* refer only to those propcrties 
which are expressible by sentential formulas in language L,’. Likewise, 
the class of axioms A8* is weakcr than the axiom A8, 

44, PEANO’S AS FOR THE NATURAL NUMBERS 

44a. The first version: the original form. For the original account, sec 
Peano [Formulairc] ll, §2: be Ha 1898, pp. 1 ff. For another 
account, sec Russell [Introduction] Ch. Our formulation A may be 
read after 18, formulation C after 32. the AS features three printitive 
signs: ‘ze’, ‘N’, ‘sc’. The sign ‘ze’ is an individual constant, ‘N’ a one-place 
predicate, and ‘sc’ a onc-place functor. The usual interpretation is: ‘ze’ 
denotes the number 0; ‘Nx" reads “‘x is a (natural) number"; and ‘sc(x)’ 
feads ‘the successor of x” or “the (natural) number following x”. 
Zcro is a number: 

AL. M(ze). 
The successor of a number is a number; 

AQ A. Nx > N(sc(x)). 
C. se8N CN. 
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Numbers with the same successor are identical: 

A3. Nx. Ny.(se(x)=se(y)) > (x=)). 

Zero is not the successor of any number: 

Ad. A. Nx > (se(x)#ze). 
C. ~(sc*N)(ze) 

Axiom AS is the Principle of Mathematical Induction (‘complete 
induction); recall 37c. Every number is F if the property F satisfies the 
two conditions: (1) zero is F; and (2) if any individual is F, then so js 
its successor: 

AS. A. (F)[F(ze).(x)(Fx> F(se(x))) > (»)(Ny> Fy). 
B. (F)[F(ze).(seFe F) > (NEF). 

44b. The second version: just one primitive sign. The single primitive sign 
here is the two-placc predicate ‘Pr’; its customary interpretation: ;mmediate 
predecessor in the serics of natural numbers. For discussions, see Russell 
[Introduction] Ch. 1 and [P.M.] Il, 245, Formulation A may be read 
after 18, formulation C after 37. 

The (natural) numbers are the members of Pr: 
Dit, A. Nx = mem(Pr)x. 

Cc, N=ment(Pr). 

The relation Pr is onc-onc: 

AL*, A. (Pr(x,z)-Pr(yz) > x=). (Pr(x,y).Pr(x,2) > y=z). 
C. Un, (Pr). 

The relation Pr has exactly onc initial member: 

A2*, A. (3x)(y) [NY ~(G2)(Pr(z,)) = (v=2)]- 
C. I(init(Pr)). 

If definitions by description arc admitted into Janguage C (recall again 
the note at the end of 35), axiom A2* provides a basis on which the number 
zero can be defined by D3*(C): ‘ze=(rx)(init(Pr)x)'. 

Every number is the predecessor of something, i.e. Pr has no terminal 
member; 

A3*, A. Nx > (3y)Pr(x,y). 
Cc. NS mem,(Pr). 

Each member of Pr can be reached from an initial member in finitely 
many Pr-steps, ie. every member of Pr possesses all the Pr-hereditary 
propertics (36a) of any initial member of Pr: 

Aa*. AL (x)(y)(F)[Nx-~(G2)(Pr(z,x)) Ny -Fx.()(0)(Fu.Pr(ue) > Fe) > 
Fy). 

C. a. init(Pr)x.Ny > Pr2%(x,y); or 
b. N & (Pr20)-!*(init(Pr)). 
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Definition of the explicit concept M of this AS (in formulation C), We 

form the definiens in accordance with the procedure outlined in 42d, viz. 
we eliminate ‘N’ from the axioms by means of D1*, replace the primitive 
constant ‘Pr’ by the variable ‘/1’, and form the conjunction: 

pat. C. MCI) = Un, 3(/1). Uinit(H)).(mem(H) < mem, (H)) .(mem(H) 
& (H>0)- 1(init(H))). 

In view of this definition, M is the class of relations that satisfy axioms Al* 
through A4*, 
The definicns of ‘M’ can readily be transformed into that of ‘Prog’ (recall 

p37-1) Thus ‘M” and ‘Prog’ are synonymous, the models of the AS now 
under consideration are the progressions, and the explicit concept of this 
AS is the class of the progressions. 

Finally, let us cite a simple example of a theorem in this AS, viz. Pr is 
asymmetric: 

TI*. C. As(Pr). 

This theorem corresponds to the open sentential formula ‘As(H)' and so to 
the universal conditional sentence ‘(H)[M(H) > As(H)]’ that says: every 
relation that satisfies the four axioms is asymmetric. This sentence is 
provable in language C (which here serves as our basic Janguage); in the 
usual interpretation of this language, the sentence is L-true. 

45. AS FOR THE REAL NUMBERS. 

This AS stems from Tarski [Logic] §63. An account of it may also be 
found in Cooley [Logic] §36. The AS has six primitive signs, viz. two 
predicates: ‘R’ (Real number) and ‘S’ (relation Smaller); two two-place 
functors; ‘su’ (sum) and ‘prod’ (product); and two individual constants 
(numerals): ‘0’ and ‘I’. Tarski mentions the fact that the axioms are not 
mutually independent (i.c. several of them are derivable from the others 
and hence are superfluous, theoretically speaking); he also gives another AS 
{it is in $61 of the book cited above) which is distinctly shorter but which 
makes the derivation of thcorems far morc complicated. (Formulation A 
of the following AS can be read after 18, formulation C after 38 ) 
The first AS for real numbers was given by Hilbert (“On the number 

concept”, orig 1900, later published in the appendix of his book The 
Foundations of geometry, 1902) 
Of two different numbers, one is smaller than the other: 

Al A. (x#y) > SxpV Spx. 
C. Connex(S). (See 31b.) 

The relation S is asymmetric: 

AQ, A. Sxy > ~Syx. 
C. As(S). 
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The relation S is transitive: 

A3. A. Sxy.Spz > Sxz. 
C. Trans(S). 

The relation S is a Dedekind relation (38b): 

A&A. (x)(y)[Fx- Gy > Sxy] > (32)0)())[Fx. (x #2).Gy.(V42) > 
Sxz.Szy]- 

C. Ded(S). 

It follows from A4 and other axioms that S has no initial member and no 
terminal member, and hence that S belongs to the kind Dedyo, 

The sum of two numbers is a number: 

AS. Rx. Ry > R(su(x,y)). 
The sum is commutative: 

AG, su(x,y)=su(y,x). 

The sum is associative: 

AT, su(x,su(y,z)) =su(su(x, y),z). 

Existence of the difference of two numbers: 

AB. Rx. Ry > (32) (Rz.(x=su(y,2))). 
[Here Cooley takes the simpler axiom: ‘Rx > (32)(Rz.(su(x,z)=0))".] 
Monotony of the sum. 

AI, Syz > S(su(x,y),su(x,2)). 

It is the case that 0 is a number: 

A10. (0). 

It is the casc that x+0=x: 

All. su(x,0)=x. 
The product of two numbers is a number: 

Al2. Rx.Ry > R(prod(x,y)). 
The product is commutative: 

A13. _prod(x,y)=prod(),x). 
The product is associative: 

Al4._ prod(x,prod(y,z))=prod(prod(x,y),z). 
Existence of the quotient: 

AIS, Rx. Ry.(y#0) > (92)(Rz. (x=prod(y,z))). 
Monotony of the product: 

A16. S(0,x).S(),2) > S(prod(x.y), prod(x,z)). 
The distributive law: 

AIT. prod(x,su(y,z))=su(prod(x, y), prod(x,z)). 
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It is the case that | is a number: 

A18. R(1). 

It is the case that x-l=x: 

A19.  prod(x,1)= 

It is the case that 0 is distinct from 1: 

A20. OF1. 
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Chapter F 

Axiom systems (ASs) for geometry 

46. AS FOR TOPOLOGY (NEIGHBORHOOD AXIOMS) 

The AS below is constructed following Hausdorff [Grundziige] 213 ff. 
(compare also Rosser [Logic] Ch. 1X, sec. 8; and H_F. Bohnenblust, Theory 
of functions of real variables, Princcton 1937). With the elements, called 
points, certain classes of points are associated as neighborhoods. Such a 
neighborhood system forms a topological space. 

46a. The first version. Here the only primitive sign is the predicate ‘Np, 
The expression ‘NA(F,x)' reads “the class F (of points) is a ncighborhood of 
(the point) x”. (Formulation A, with D12 excepted, can be read after 19; 
formulation C, aftcr 32 ) 

The points are the second-place members of Nb: 

Di, A. Px = mem,(Nb)x. 
C. P=mem,(Nb). 

The neighborhoods (*Nb/’) are the first-place members of Nb: 

D2. A. Nbi(F) = mem,(Nb)(F). 
C. Nbh=mem,(Nb). 

The point classes: 

D3. A. PC(F) = (2)(Fz > Pz). 
C. PC=sub,(P). 

Each neighborhood is a class of points: 
Al. A, Nbh(F) > PC(F). 

C, Nbc PC. 

Every neighborhood of x contains x: 
A2. Nb(F,x) > Fx. 

If F, and F2 are neighborhoods of x, then there is a ncighborhood of x 
which is a subclass both of F, and of Fy: 

A3. A. Nb(F,x).Nb(F2,x) > (3G)[N(G,x).(y)(Gy > Fry. Fry)]. 
C. Nb(Fi,.x). NB(F2,x) > (3G)[NO(G,x).(G S F;.F,)]. 

If y belongs to the neighborhood F of x, then there is a neighborhood 
G of » such that G is a subclass of F: 

A4, A. Nbh(F).Fy > (3G)[NA(G,y).(2)(Gz > Fz)]. 
C. Nbh(F). Fy > (3G)[NO(G, v).(GE F)]. 

1R6, 
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Two diffcrent points have neighborhoods with no points in common: 

AS. A. Px.Py.(x#y) > (3F)(3G)[NA(F,x). NB(G,»). ~(32)(Fz.Gz)]. 
C. Px. Py.(x#¥) > (GF\3G)[NA(F,x). NE(G,y).~3(F.G)]. 

46b, The second version. Here the sole primitive sign is the predicate 
‘Nhl’ (of second level), Noh is the class of all neighborhoods. (Formula- 
tion A can be read aftcr 17; formulation C, after 37.) We take any class 
which belongs to Nbi as a neighborhood of any of its points. (This is a 
simplified version of Rosser’s AS, p. 273, which uses two primitives and 
essentially three axioms.) 

DI*. A. Px = (3F)[Nbi(F). Fx]. 
C. P=sin,(Nbii). 

The following axioms Al* and A2* correspond to A3 and AS, respec- 
tively. 

AI*, A. Nbh(F,). Nbk(F2). Fix. Fax > (3G)[NbIn(G).Gx.(»)(Gy > Fy. 
Fiy)]. 

C. NONE). NBN(F,). F)x.F)x > (3G)[NbM(G).Gx.(G < Fy.F,)] 
A2*, AL Px. Py.(x#)) > (3F)\(3G)[Nbh(F). Fx. Nbl(G). Gx.~(92)(Fz. 

Gz 
C. Px. Py. (x#») > (3F)(3G)[NbM(F). Fx. NbI(G).Gx.~3(F.G)] 

We now define the two-place predicate ‘Nb’ so that it corresponds to the 
primitive predicate *Nb" of the first version: 

D2*.  Nb(F,x) = NbI(F). Fx. 

D3*. For ‘PC’, as in D3. 

It can easily be shown that on the basis of these axioms and definitions, 
the five axioms of the first version are derivable. 
The additional concepts of topology (point set theory) can be defined on 

the basis of ‘Nbi’. Some examples follow below: 
A point x of the class F is called an “inner” point of F provided there is a 

subclass of F which is a neighborhood of x. 

D4*, A. Inn(x,F) C(F).(3G)[NA(G,x).(z)(Gz > Fz)]. 

C. Inn(x,F) = PC(F).3(NO-x). sub,(F)). 
A point class is called “open” (‘OPC’), if all its points are inner points: 

DS*. A. OPC(F) = PC(F).(x)(Fx > Iun(x,F)). 

C. OPC(F) = PC(F).(F < Inn(,F)). 
By the complcment of F we understand the class of all those points which 

do not belong to F (note that ‘cp/’ is a functor of the sccond level): 

D6*. A. cp F)x = Px.~ Fx. 
C. cpl F)=P.~F. 
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We say that x is a limit point of F (‘Lim(x,F)’) provided F is a point class 
and x is a point (not necessarily belonging to F) such that every open point 
class containing x also contains a point of F different from x: 

D7. Lim(x,F) = PC(F).Px.(G)[OPC(G).Gx > (ay)(y#x.Fy.Gy)]. 
A point class is called “closed” if it contains all its limit points: 

D8*. A. Clos(F) = (x)[Lim(x,F) > Fx]. 
C. Clos(F) = [Lim(-.F) < F). 

The closure of F is defincd as the union of F and the class of the limit 
points of F. It is denoted by ‘c/os(F)’, where ‘clos’ is a functor of second 
level: 

D9. A. clos(F\(x) = FxVLim(x,F). 
C. clos(F) = FV Lim(-,F). 

A point x is said to be a point of accumulation of F(‘Ace(x,F)’) provided 
every neighborhood of x contains infinitely many points of F: 

DI0*. A. Ace(x,F) = (G,)[Nb(Gi.x) > (3G2)(3G3)[(2(Gsz > Gz). 
(y)(Gry. ~ Gsy).15,(GyGa).(2(Gaz > Giz. F2))]). 

C. Ace(x,F) = (G)[NH(G,x) > ClsRef(F.G)]. 
Theorems. The whole space, i.c , the class of all points, is both open and 

closed: 

Ti. a. OPC(P). b. Clos(P). 

Every neighborhood is open: 

T2. A. Nbk(F) > OPC(F). 
Cc. Nb < OPC. 

The closure of any point class is closed: 

3. PC(F) > Clos(clos(F)). 

A point class is closed if and only if it is identical with its closure: 

T4. A. Clos(F) = (x)[Fx = clos(F)x]. 
C. Clos(F) = [F=clos(F)]. 

A point class is closed if and only if its complement is open: 

T5. Clos(F) = OPC(cpi(F)). 

46c. Definition of logical concepts. What follows is given in formulation 
C, and may be read after 40. We begin by defining the explicit concept 
(recall 42) for the Hausdorff AS in its sccond version (46b), in this connec- 
tion we usc the symbol ‘Hausd(M)', which reads “The class M (of the 
sccond level) satisfies the Hausdorff AS” or “M is a (Hausdorff) ncighbor- 
hood system." Thercafter we list definitions of additional logical concepts, 
culminating in the concept of the dimension number (see Karl Menger, 
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Dimensionstheorie, 1928, pp. 77 ff.; see also his “What is dimension 2”, 
Amer, Math. Mon., 50, 1943). All these definitions are formulatcd just in 
language C; their formulation in language A is too long and complicated. 

DIU. C. Mausd(M) = (F,)(F2)(x)[M(F)) - M(F) . Fix. Fax > (G) 

[M(G). Gx .(G Fy. F2)]) «20 [sm (M x. sm (My (x # Y) 
3 (3F)(gG)[M(F). Fx. M(G).Gx.~3(F.G)]]. 

To the axiomatic predicate ‘Acc’ (recall D10*) there corresponds the 
logical predicate ‘Acp’; the sentence ‘Acp(x,F,M)’ says “x is a point of 
accumulation of F with respect to neighborhood system M" (all the other 
concepts below similarly refer to a neighborhood system M): 

D12*. C. Acp(x,F,M) = Hausd(M).(G)[M(G).Gx > ClsRefi(F.G)]. 

The boundary of a class F with respect to M (symbols: ‘hd(F,M)’) is the 
class of those accumulation points of F respecting M which arc not points 
of F: 

D13". C. hd(F,M)x = Acp(x,F,M).~ Fx. 

For subsequent definitions we enlarge our language by adding a second 
type of individuals, (Thus we are cstablishing a two-sorted language, in 
the sense of 21c.) There is already at hand the type of the objects; points 
arc of this type, as arc the variables ‘x’, ‘y", cte Besides that type we now 
include the type of the integers, and take the variables ‘m’, ‘n’, etc., to be of 
this type. We use the language form explained in 40c, with its additional 
primitive signs ‘0’, *”, *K’ and ‘Sm&q’. 

Our definition 114* below is a three-part recursive definition; excepting 
the fact that it defines a predicate, this definition is analogous in form to 
D40-11. Definition D14* is our initial step towards a definition of dimen- 
sion number in the fashion of Menger. In defining this latter concept we 
have departed from Menger so as to avoid the appearance of a vicious circle 
and to represent the concept exactly. 
We treat first the preliminary concept “A dimension number at most 1 is 

possessed by F at point x with respect to ncighborhood system M”. We 
want this conccpt to conform to the following rulcs: (1) A dimension number 
at most —I is to be possessed by the empty class at every point x; (2) A 
dimension numbe1 at most n+ is to be possessed by a class F at any one 
of its own points x if and only if there is an arbitrarily small ncighborhood 
G, of x (which is to say, provided there is within cach neighborhood G, of 
x another neighborhood G, of x) such that a dimension number at most n 

is possessed by the intersection of F and bd(G2,M) at each point of this 
interscction. A final remark: So that our recursive definition may have 0 
yather than — | as initial argument, we define in D14* the auxiliary predicate 
‘Di’ such that ‘Di(n,F.x,M) reads “A dimension number at most n—1 is 
possessed by F at point x with respect to neighborhood system M”. 
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Di4*. C. 1. Di(0,F,x,M) = Hausd(M).~3(F). 
2. SmEgq(0,n) > [Di(n',F,x,M) = Hausd(M).(FEsm,(M)). Fx, 

(G)[MG,).G,x > (3G2)[M(G2).Gax.(G2> G,). (Fy. 
bd(G2,M)y > Di(n,F.bd(G2,M),y,M))]]]-. 

3. SmEq(n,0) > [Di('n,F,x,M) = (x#x)]. 

Parts | and 2 of this definition express respectively the two rules (1) and (2) 
set forth above Part 3 is added simply to cstablish that numbers less than 
0 are not first-place members of Ji, ie. that numbers less than —1 do not 

occur as dimension numbers (notice that the dcfiniens is L-falsc). 

By the dimension number of class F at point x respecting neighborhood 
system M (symbolically: ‘dimp(F,x,M)’) we understand the smallest number 
nsuch that Di(n',F,x,M), i.e the smallest number # such that a dimension 
number at most 1 is possessed by F at x respecting M: 

DI5*. C. dimp(F.x,M)=(Kn)( Di’, F,x,M)). 

Omitting the reference to a point, we say the dimension number of class F 
respecting neighborhood system M (symbolically: ‘dim(F,M)’) is n pro- 
vided: cither F is cmpty and n=—1; or clse F is not empty, the dimension 
number of /* at each of its points does not exceed n, and the dimension 
number of F at onc at Icast of its points ism. Thus: 

D16". C. dim(F,M) = (Kn)[(~3(F). (n= —1)) V[QO(Fx > 
SmEgq (dimp(F,x,M),n)).(ay(FY . dinp(F,»,M)=n.)]] 

We say that F has the homogeneous dimension number n provided cither 
F is empty and n= —1, or clse F is non-empty and has dimension number mt 
at each of its points: 

D17*. C. Dimhom(n,F,M) = Hausd(M). [(~3) (n=— 1))V[3(F). 
(x)(Fx > dimp(F,x,M)=n)]]. 

The concepts defined above, especially the logical predicate ‘Dinthom’, 
are utilized in 48d, 49 and 50. 

47, ASs OF PROJECTIVE, OF AFFINE AND OF METRIC 
GEOMETRY 

This system follows on the whole that of Roth [Axiomat.]; our formula- 
tion A may be read after 18, formulation C after 33. Our program is as 
follows: first we sct up an AS of projective geomctry (47a); this system is 
then cnlarged through the addition of a new primitive sign (and, under 
certain circumstances, of new axioms) to an AS of affine geometry (47b); 
and finally, this last system is similarly extended to an AS of metric (Eucli- 
dean) geometry (47c). 
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‘The first modern AS of Euclidean geometry is duc to Hilbert (Foundations of geometry, 
1899). A modified form of Hilbert’s system has been formulated symbolically by O. 
Helmer (Axiomatischer Aufbau der Geometrie in formalisierter Darstellung, Diss. Berlin 
1934; Schriften des Math, Seminars cer Universitat Berlin, 2, 1935). 

47a. AS of projective geometry: Al-A20. The primitive signs are three 
predicates of the first level: ‘O’, ‘Jn’, and ‘S’. The sentence ‘Oxu’ reads 
“the point x lies on the line u””; the sentence ‘/n(x,r)’ reads “the point x lies 
in the plane r”; and the sentence ‘Sxyvw* reads “‘the points x and y separate 
the points v and w ona line”. In connection with this last reading we 
remark that projective lines are closed and thus the points of any such line 
have a cyclic order. 
We distinguish three types of individuals, viz. points, lines and planes. 

Thus we require a three-sorted language (recall 21c) and three kinds of 
individual variables. We agree to use the variables ‘x’, ‘y’, ‘2’, ‘v', ‘w’ for 
points, ‘f’ and ‘w’ for lines, and ‘r’ and ‘s’ for planes. 

[Were we to employ a one-sorted language, we would need to introduce 
thrce additional primitive signs, viz. three one-place predicates denoting 
respectively the class of points, the class of lines, and the class of planes. 
Moreover, we would require eight new axioms: three axioms to the effcct 
that the thrce classes just mentioned are mutually exclusive, and five other 
axioms stipulating to which of these three classes the members of ‘O’, of 
‘In’, and of ‘S’ belong. Further, the additional axioms we take would 
frequently call for extra conditions to the effect that x and y are points, or 
the like; a three-sortcd language dispenses with this, since the sort of the 
individual is conveyed by the shape of the variable.] 

Axioms Al through A 10 are called axioms of connection (see Roth: 1, 1-8). 
For any two distinct points, there is at least one line (Al) and at most one 

line (A2) on which they both lie: 

Al. A. (x#y) > (qu)(Oxu. Oyu). 
Cc. Jeajo-. 

A2. A. (x#y).Oxu.Oyu. Oxt.Oyt > (u=t). 
C, 2,(O(-, u).O(-, 1)) > (u=1). 

On cach line there are at least two distinct points: 

A3. A. (9x)(ay)(Oxu. Oyu.(x#y)). 
C. 2,,(OC-, u)). 

Thrce points arc said to be collinear provided they lie on the same line 
(D1); and similarly for four points (D2): 

DI. Colls(x,y,z) = (qu)(Oxu. Oyu. Ozu), 

D2. Coll,(x,y,z,w) = (gu)(Oxu. Oyu. Ozu. Ovwu). 
There are three non-collinear points: 

Ad. A, (3x)(3y)(32)(~ Colls(x,y,2)). 
C. 3(~ Coll). 
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Every three non-collinear points lie in a plane: 

AS. ~Colls(x,y,2) > (3r)(In(xr)-In(y,r). In(z,r)). 
In each plane there is at least onc point: 

AG. (3x)/n(x,r). 

For every three distinct non-collinear points there is at most onc plane in 
which they lic: 

AT, A ~Colls(x,y,2).(x# y).(x#z)(V#z).In(xyr). In(y,r)-In(z,r).In(x,5), 
In(y,s).In(z,8) > ("'=5). 

C. a[(~Colls.Js)in(In(r).In(-,8))] > (rs). 
The line wu is said to lie in the plane r (symbolically: ‘Lin/n(u,r)’ provided 

all points which lie on yw also lie in r: 

D3. LinIn(uyr) = (z)(Ozu > In(z,1)). 

If each of two distinct points of a line lie in one plane, then the entire 
line lies in that plane: 

A8. A, Oxu.Oyu.In(x,r)-In(y,r).(x#¥) > LinIn(u,r). 

C. 2,,(O(u).In(-r)) > LinIn(u,r). 

If two planes have a point in common, they also have a second different 
point in common: 

Ad. AL In(x,r).dn(x,s) > (3y)((y# x) In(y,r)In(y,5)). 
C. 1,,a-,r).In(-,s)) > 2a"). In(-5)). 

There are four points which lic in no one plane: 

Al0. (3x)(3»)(32)(gw)~ (37) [In(x,r). I(r). Jn(z,7).Jn(we,r)) 

Axioms All through AI9 are called axioms of order (sce Roth: 11, 1-8), 
If points x, y separate points v, w, then points x, y, v, w are distinct and 

collinear: 

All, A. Sxyow > Colla(x,yu,w).(xF y).(x# v).(x#w).(y#v).VFw). 

(v4) 
C. 5 (Coll,.J4). 

If x,y separate v,w, then x,y separate w,v: 

A12, Sxyow > Sxywo. 

If x,y scparate v,w, then v,w scparate x, 

Al3. Sxyuw > Svwxy. 

If x,y,v are distinct collinear points, then there is a point w such that x,y 
separate v,W? 

Ald, A. Coll;(x,y,v).(x#y).(x#v).(y# 0) > (Qw)Sxyow. 
C. (Coll;.J;)xyv > 3(S(x,y,v,-))- 
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If x,y,v,\v are distinct collinear points, then either x,y separate v,w; or 
x,v separate y,W; or y,v separate x,w: 

AIS. A. Coll,(x,y,v,w).(x# y).(x# 0). (x4). (VF ve). (VF). (VF W) > 
SxyowV SxvpwV Syoxw. 

C. (Colly.Jq)xyow > SxyowV SxvpwV Synxw. 

If x,y Separate v,w, then x,v do not separate y,w: 

Al6, Sxyow > ~ Sxvyw. 

If x,y separate z,v, if z,v,w are collinear, and if w is distinct from x and 
from y, then x,y separate z,1w if and only if x,y do not separate v,w: 

AIT. Sxyzv. Coll;(z,v,w).(W#X).(wAY) > (Sxyzw = ~ Sxyvw), 

Axiom A18 is the axiom of Pasch. Suppose that three non-collinear 
points x,y,z and also all the points of line u and of line f lie in the same 
plane r, but that none of x,y,z lies on either of wand ; and suppose further 
that v is a point on u, that w is a point on ¢, and that x,y separate v,w; then 
there is a point v on uw and a point w on f such that v,w separate either y,z 
or X,2: 

AI8. A. In(x,r) . In(y,r) « In (z,r) «~~ Colls (x,y,z). LinIn(u,r) . LinIn(t,r) « 
~Oxu.~ Oyu.~ Ozu.~ Oxt .~ Oyt.~ Ozt .(3v)(3w)(Ovu. 
Owt .Sxyvow) > (3v)(qw)[Ovu. Owt. (Svwyz V Sowxz)]. 

C. ~Colls(x,y,z).LinIn(ur).LinIn(t,r). [{x,9,2}¢ Un(—r).~ Ou). 
~ O(-,1))] «(3v)(3w)(Ovu. Ow . Sxyow) > (gv)(3w)[Ovu. Owr. 
(SowyzV Sewxz)]. 

We say that point w belongs to segment x,y,z (and write: ‘Segm(w,x,y,z)’) 
provided x,y,z are three distinct points on a line u, w lies on u, and w,y do 
not separate x,z: 
D4. A. Segm(w,x,y,z) = (gu)(Oxu. Oyu. Ozu. Owu).(x#y).(x#2z). 

(y#z). ~ Swyxz. 
C. Segm(w,x,y,z) = (Js in O(-,u)) xyz. Ow. ~ Swyxz. 

We say that w is an inner point of segment x,y,z (and write: ‘/Segm 
(w,x,,2)') provided w belongs to segment x,y,z and is distinct from x and 
from z: 

DS. ISegm(w,x,y,z) = Segm(w,x,y,z).(w#x).(w#z). 

Axiom A19 is the axiom of continuity. If F is a subclass of a segment and 
has at least two points, then there exist three points x,y,z) such that F is 
contained in segment x;,y;,z) and each segment having either x; or z, as an 
inner point also has an inner point that belongs to F; 

AI9. (3x)(3y)(gz)(0)(Fo > Segm(v,x.y.2)) « (Qv)(aw)(Fo . Fw. (vw) > 
(3x1)(3y1)(321)[(e)(Fo > Segen(v,1,91,21)) « %2)(72)(Z2)(USegm(x1,%2, 
VaszZ2) V ISegm(z1,X2,¥222)) > (aw)(ISegm(w,x2,y2,22).Fw))- 
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Axiom A20 is the projective axiom (see Roth: III): Two lines in a plane 
always have at least one point in common: 

A20, A. LinIn(u,r).LinIn(1,r) > (3z)(Ozu. O21). 
C. (Linkn|LinIn-) < (O70). 

47b. AS of affine geometry. We obtain affine geometry from projective 
geometry by singling out one (projective) plane and giving it a particular 
role in the system. This plane can be selected arbitrarily from all the 
available projective planes. Once sclected, the plane is called the improper 
plane (sometimes the ideal plane) and is designated by the sign ‘improp’, 
Hence our AS of affine geometry requires an additional primitive sign 
‘improp’. The sign ‘improp’ is an individual constant of the third sort in 
the three-sorted language (points, lines, planes) we have developed for our 
ASs of geometry. The role of this improper plane is indicated in definition 
D9 below. Our AS of affine geometry thus comprises the four primitive 
terms ‘O’, ‘In’, ‘S’ and ‘improp’, the axioms and definitions already laid 
down for projective geometry, and the four definitions now to be given, 

Points and lines lying in the improper plane are called respectively im- 
proper points and improper lines. All other planes, points and lines are 
called respectively proper planes (‘PPI’), proper points (‘PPo') and proper 
lines (‘PL’). 

D6. PPKr) = (r#improp). 

D7. PPo(x) = ~ In(x,improp). 

D8. PLi(u) = ~LinIn(u,improp). 

Two proper lines are said to be parallel (‘Par’) provided they have an im- 
proper point in common: 

D9 Par(uyt) = PLi(u). PLi(t). (4x)(In(x,improp). Oxu. Oxt). 

This form of the system requires no additional axioms for affine geo- 
metry. A formation rule lays it down that ‘improp’ is an individual constant 
of the third sort, ic. of the same sort as the variable ‘r’, And from this it 
follows that ‘(3r)("=improp)’ is provable (“There is a plane improp”). 

[There are alternative routes to affine geometry besides that of introducing 
‘improp’ as a new primitive sign. Of these we mention the following two: 
(1) We may take as a primitive sign the predicate ‘/P/’ designating the class 
of improper plancs, and then lay it down as an axiom that one and only 
one plane belongs to this class; again (2) we may take ‘Par’ (“parallel”) as 
a primitive sign, lay down suitable axioms for it, and then with the help of 
‘Par’ definc ‘/PI’ and if desired ‘improp’. This last constant is introduced 
by descriptional definition (recall 35b), once ‘1(/P/)’ has been proved.] 

47c. AS of metric Euclidean geometry: AI-A32. Euclidean geometry is 
obtained from affine geometry by omitting from the latter the improper 
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elements—more exactly, by the introduction of concepts which refer only 
to the proper clements. The additional primitive sign here is ‘Perp’; the 
sentence ‘Perp(u,r)’ is read “the proper line u is perpendicular to the proper 
plane 7”. Axioms A2I through A32 below are called axioms of ortho- 
gonality (Roth: V, 1-3). 

The first-place members of Perp are proper lines (A21), and the sccond- 
place members thereof are proper planes (A22): 

A21. A. mem,(Perp)u > PLi(u). 
C. mem,(Perp) < PLi. 

22. A. mem,(Perpyr > PPKr). 
C. mem,(Perp) < PPI. 

If the proper point x lies in the (proper) plane r, then there is at least 
(A23) and at most (A24) one line through x perpendicular to r: 

A23. PPo(x).In(x,r) > (3u)(Oxu. Perp(u,r)). 

A24. A. PPo(x).In(x,r).Oxu. Perp(u,r). Oxt.Perp(t,r) > (u=1). 

C. PPo(x).In(x,r) > ~2,,(O(x,-). Perp(-,r)). 

If the proper point x lies on the line u, then there is at least (A25) and at 
most (A26) one plane r in which x lies and to which wu is perpendicular; 

A25, PPo(x). Oxu > (3r)(In(x,r). Perp(usr)). 
A26. A. PPo(x).Oxu.In(x,r).Perp(uyr). In(x,s).Perp(u,s) > (r=s). 

C. PPo(x).Oxu > ~2,(In(x,-).Perp(u,-)). 

If the proper point x lies on the (proper) linc u, then there is at least (A27) 
and at most (A28) one plane s such that x lies in s and the following is the 
case: if u lies in the plane r and line ¢ is perpendicular to ¢ and x lies on 1, 
then all points of ¢ lie in s: 

A27, PPo(x).Oxu > (35) [InQa, 8). (7)()(LinIn(u,r). Perp(t,r). Oxt 2 
LinIn(1,s))]. 

A2B. PPo(x) . Oxu . In(x,s1) « In(x,52) « (r) (1) [Lintn (ur). Perp(t,r).Oxt > 
LinIn(t,s,)-Linkn(1,52)] > (5; =52). 

If the proper point x lies on the lines uw and / and in the plancs s and », if 
u its perpendicular to s and / to r, and if x lics in r, then # lies in s: 

A29. PPo(x). Oxu. Oxt . In(x,s). In(x,r). Perp(u,s). Perp(t,r). LinIn(u,r) > 
LinIn(1,s). 

If the proper point x lies on the line u and in the plane r, and if « is per- 
pendicular to r, then u does not lie in r: 

A30. PPo(x).Oxu. In(x,r).Perp(u,r) > ~ LinIn(u,r). 
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If lines u and 1 are perpendicular to a plane, then there is a plane r in 
which both u and ¢ lie: 

ABL. A. Perp(u,s).Perp(t,s) > (3r)(LinIn(u,r).LinIn(1r)). 
C. (Perp|Perp 1) < (LinIn|LinIn *). 

If two different lines u and 7 are perpendicular to the same plane, then y 
and 7 have no proper point in common: 

32, Perp(u,s). Perp(t,s),PPo(x).Oxu. Ox! > (u=1). 



Chapter G 

ASs of physics 

48. ASs OF SPACE-TIME TOPOLOGY: 1. THE C-T SYSTEM 

48a. General remarks. The topological structure of the physical world is 
independent of measurable magnitudes. However, the method ordinarily 
employed in physics to treat topological properties of space and time makes 
usc of measurable magnitudes, viz. of coordinate systems. Such a co- 
ordinate system associates with each space-time point a quadruple of rcal 
numbers; whilc this association is bascd on certain arbitrary conventions, 
the arbitrariness is subsequently eliminated in topology through the device 
of considering only those propertics which are invariant under any one of 
a certain class of transformations from one coordinate system to another, 
This usual procedure is convenient mathematically because it utilizes the 
familiar and effective means of real numbers and real functions; nevertheless 
it is, so to speak, methodologically impure. 
The question thus arises whether it is possible to treat topological 

properties of space and time by a purely topological method, ie. a method 
which makes no use of conceptual means—such as c.g. real numbers and 
coordinate systems—that have a metric (non-topological) character, Such 
a method is possible on the basis of the logic of relations; indeed, this is truc 
for topological problems generally, and not simply for topological problems 
concerning space and time that arise in physics. The AS presented here- 
with is intended to illustrate how the logic of relations makes possible a 
treatment of topological questions by purely topological means. The AS is 
based on the conception of space and time found in Einstein’s general theory 
of relativity; a knowledge of this theory is, of course, not presupposed. 

For more detailed discussions of the concepts here employed from relutivily theory, sce 
eg. Reichenbach, Axiomatik der relativistischen Raum-Zeit-Lehre, 1924 Concerning 
the C-T system used here (as presented by me carlier in [Abriss]) and related systems 
stemming from Robb, Reichenbach and Russell, sce H_ Mehlberg, “Essai sur lu théoric 
causale du temps", Studia Philosophica | (1935) and 11 (1937). A similar system, making 
reference to Reichenbach and to the present system, is given by K Schnell, Fine Topoloyie 
der Zeit in logistischer Darstellung, Diss,, Munsier i. W., 1938. Concerning the philo- 
sophical significance of the present AS, cf, Carnap, “Uber die Abhingigkcit der Eigen- 
schaften des Raumes von denen der Zeit, Kantstudien, 30, 1925. 
The present C-T system treats the motions and coincidences of physical 

particles. No assumptions are made concerning the physical nature of 
these particles (they may be thought of as particles proper, e.g. electrons; 

19 
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again, they may be thought of as the smallest clements of electromagnetic 
radiation); they are regarded as idealized, ie. unextended. 

As individuals we take moments or slices of particles. Following 
Minkowski, we call the moments of a particle its world-points; the class 
of all world-points of a particle we call the world-line of the particle, 
Each world-point is assigned to a space-time point, i.c. is associated with a 
position in the space-time continuum. 

Suppose a), 4;, ¢;, ... are world-points of a certain particle, and similarly 
2, b2, ¢2, ... are world-points of another particle. Now if, say, 6; and hb, are 
assigned to the same space-time point, we take this to mcan that at the 
instant in question both particles arc in the same place, i.e. they touch or 
coincide. For this relation of coincidence Ict us now introduce the sign 
‘C’, the first primitive sign of our system. Thus the state of affairs just 
described is formulated in the sentence *Ch,b,’. 

[We obscrve here parcnthetically that our second and third forms of the 
present system (in 49 and 50, respectively) proceed differently, viz. world- 
points are identified with space-time points. For the case referred to above, 
this entails taking h, and 6, not as coincident but as identical: b,=h,’,] 

Following Kurt Lewin, we say that world-points of the same particle are 
genidentical, \n the example above, a, and 6, are genidentical; so likewise 
arc a) and ¢2; but b, and 5 are not genidentical even when they coincide, 

The second primitive sign ‘7" of our system denotes the relation Earlier 
between two genidentical world-points. Relation T thus represents only a 
local time order (the Efgenzeit of relativity theory), and not a temporal 
relation betwecn remote processes. E.g. assuming the world-points 
4,,h;,¢, of a particle to occur in this temporal order, each of the following 
sentences holds: ‘Ta,b,’, ‘Tb,¢,’, ‘Tayc,’. It is to be noted that T is a topo- 
logical concept, not a metrical one; which is to say, statements about T 
presuppose a comparison of carlier and later, but no measurement of 
temporal durations. It is often remarked that all observational statements 
of physics can be referred back to observational statements about co- 
incidences, This claim is imprecise. Observational statements about 
coincidences need to be supplemented by observational statements about 
the Eigenzeit relation, for by observation of coincidences alone it is not 
possible to establish the temporal order of the processes—viz. coincidences 
with other particles~-involving a single particle. 

The construction of the present system (of which only the chief features 
are indicated in what follows) shows that our relations C and T suffice to 
express not only the topological structure of temporal order, but that of 
spatial order as well. 

48b. C, 7, and world-lines. The first form of the system, presented in 
this section, contains two primitive signs, viz. ‘C’ and ‘7’, [The two 
leading subsections, 48b and 48c, may be read in formulation A (which 
omits Al3 and the theorems) after 18; in formulation C, after 38. Several 
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axioms are given alternative formulations in language C. For the sake of 
brevity, we formulate the theorcms in language C only.] 

Relation C is symmetric (AI) and transitive (A2), thus C is an equivalence 
relution (sec 34a). 

Al. A. Cxy> Cyx 

Cc. C&C, [Alternatively: Sym(C).J 
A2 A. Cxy.Cyz> Cxz. 

Cc. C?<C_ [Alternatively* Trans(C).] 

Every individual coincides with something‘ 

AB. A. (x)(Qy) C0 
C. men(C). [Abbreviation for ‘U(nem,(C))'; see 28b } 

Theorem, Every individual coincides with itself, i.e. relation C is totally 
reflexive: 

Ti. C. /<C, [Alternatively: Reflex(C).] [By Al, A2, A3 and T31-I(d) 
and (c).] 

Relation T is transitive (A4), irreflexive (A5), and dense (A6; see 38a): 

Ad A. Txy.Tyz> Txz, 

C. PCT, [Alternatively: Trans(T).] 
AS. A. ~Txx, 

C. TcJ. [Alternatively: /rr(7).] 
AG. A. Txp>(3u)(Txu.Tuy). 

iC Fet2, 

Every individual is a first member (A7) and a sccond member (A8) of 7: 

AT. A. (x)(3y)Txy. 
C. mem(T). 

AB. A. (9)(3x)Txy. 
a '. mem(T). 

Theorems. Relation 7 is asymmetric (T2); 7 has no initial member (T3) 
and no terminal member (T4): 

12. C. TS ~(T-'), [Also: As(T)] [From A4, AS, and T3I-1g.] 
13. C. ~3(ini(T)). [From A8, D32-8] 
Ta. C. ~3(ini(T-')). [From A7.] 
Axiom AQ leads to the theorem (T5) that C and 7 arc mutually exclusive: 

AD, A. Cxy.(x#y) > ~Txy. 
Cc. C.J ~T. 

TS. C. CC ~T. [By A9 and AS] 
World-points x and y are genidentical provided x is identical with y, or 

the relation 7 holds between them in onc direction or the other: 

D1. A. Gen(x,y) = TxyVTyxV(x=y). 
C. Gen = (TVT"'VI). 



200 PHYSICS 

Theorems. Relation Gen is symmetric (T6) and totally reflexive (7): 

T6. C. Syn(Gen). [From DI] 

T7. C. Reflex(Gen) [From D1] 

A world-line never branches into two parts, cither in the direction of the 
past (A10) or in the direction of the future (AI): 

=> Ger(x,y). 
') < Gen 

All. A. Tux.Tuy > Geno 

C. (T"|T) < Gen 
Theorem Relation Gen is transitive: 

T8. C. Trans(Gen), [From A4, Al0, and All.J 

It follows fiom T6 and T8 that Gen is an equivalence relation. World- 
lines arc the non-empty cquivalence classes of Gen, ie, a world-line is the 
class of world-points genidentical with some world-point; 

D2. A. WI(F) = (3x)[(v)(FY = Gen(y,x))]. 
C. WI(F) = (3x)[F=Gen(-,x)]. 

The world-points of cach world-line are ordcied into a scrics by means of 
a subrclation of 7: these series rclations we call “‘world-line scries” (‘Win’): 

D3. A. Wlin(H) = (3F)[WI(F).(xQ)(Hay = Txy. Fx. Fy). 
C. Win) = (3F)[WI(F).(H = (T in FY). 

Theorems The world-line serics are transitive (TI1, from A4 and T32- 
2c), irreflexive (T12: by A5), asymmetric (T13; from T2) and connected 
(T14; from A4, Al, AIL); hence they are properly scrics (T15; from THI, 
T12, T14); moreover, they are densc (T16; by A6): 

TIL C. Wlins Trans, 
TI2, C. Wine br, 

T13. C. Wlinc As, 
Tid, C. Wlinc Connex. 

TIS, C. Wlinc Ser 

TI6. C. Wlin(H) > (HCH), 

Every wor'ld-linc series is a 1)cdekind relation (A12; recall 38b) and hence 
is a scries of Dedekind continuity without initial or tcrminal members 
(117): 

AI2. A. Wlin(H) > (FG)[()(3)( Fx. Gy> Hxy) > (32)(x)(v)(Fx. (x #2). 
Gy.(y#2) > Hxz. Izy). 

C. Wlinc Ded 

TI7. C. Wlin< DedSeroo. 
The following axiom A13, formulated only in language C, may be passed 

over inasmuch as it is not used hereafter. It says that every world-line 
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series has a denumerable class of intermediate members (recall D38-7) 
Hence such a series also has Cantor continuity (T18; from T17 and A13). 
This topological structural property of these series makes possible a transi- 
tion to a metric, viz it permits a one-one association of real numbers with 
world-points of a world-line. 

AI3. C. Wlin(H) > (3F)(Ro(F).Med(F,H)). 
T18. C. Wlin< ContSergo. 

48c. The signal relation. [Here formulation A (axioms only) can be 
read after 18, formulation C, after 38.] An effect reaches from a world- 
point x to a world-point y if and only if x is connected to y by a signal, 
The simplest case of such a connection sces x coincident with the world- 
point u of a particle which so moves that a later world-point « of the same 
particle coincides with y. (According as this mediating particle is a material 
particle or a particle of radiant energy, we have to do with a material signal 
or a radiation signal, e.g. a light signal.) In other cases the signal is 
not by a single particle, but by a chain of particles: x and y are joincd by a 
linkage consisting of segments of world-lines, the linkage being such that 
the end of each constituent segment is joined to the beginning of the next by 
acoincidence, Figure 4 illustrates how world-point , could be joined to 
world-point e; by the signal chain: Thc), Ceye2, Te2dp, Cdad3, Tdyes 

Fic, 4. Signal chain 
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Since identical world-points are also regarded as coincident (T1), our 
explication of the concept of the signal chain loscs no generality if Wwe 
require that every such chain begins with C and ends with C. If there is 
chain of this kind, we say that the signal relation (‘S*) exists between the 
initial member and tcrminal member of the chain, Eg, adding “Cob 
and ‘Cee,’ to the chain pictured in Figure 4, we obtain the signal chain 
Choht, Thye1, Ceye2, Texd>, Cad, Tdyex, Ce3e4: in view of this chain we see 
that Shye, is the case Of course, it is also the case that Shey, since C ig 
totally reficxive and hence both ‘*Ch,b,’ and ‘Ce;e;’ hold. Thus ‘5 
represents the same thing as ‘C|T[C!T|C|T...|C’. 

On the basis of the considerations above we construct for ‘S’ the defini- 
tion D4, [From this point on we give the definitions as well as the theorems 
only in formulation C; formulation A becomes quite complicated beginning 
with D4,] 

D4. C. S = (C)T)>C. 

Theorems. If T holds, so also docs S (T19: by TI); and S is transitive 
(120; by A2): 

T1929, A. TCS. 

120. C. Traus(S). 

The following axiom A14 serves to establish the irreficxivity of $ (T21): 

Al4. A. Sxy.~Txy > (x#)). 
C.(S.~T)C J, 

T21. C. Jrr(S). [From Al4, A5.] 

Relation S is asymmetric (T22: from T20, T21), and Sand C are mutually 
exclusive (T23; from Al, A2, T21): 

122. C. As(S). 

123, C. So~C 

Two further axioms arc to the following effect. Suppose x bears the 
relation S to y, and either lics outside the world-line of y or clse on this 
world-line bit not before y, Then, first, there is a world-point u before 3° 
on the world-line of » which is so carly that no signal (ic. S-rclation) from 
x reaches it (AI5); and, sccond, there is a world-point r aficr x on the 
world-linc of x which is so late that no signal from it reaches y (A16). 
From these assumptions it follows that the same also holds for arbitrary 
world-points x and y (T24: from A15, T19, T20, A8: and T25S: from Al6, 
T19,T20, A7). This in turn entails that on each world-line there are arbi- 
trarily carly and arbitrarily late world-points. 

AIS. A. Sxy.~Txy > (gu)(~ Sxu.Tuy). 
C. (S.~T)<((~S)T). 

124. C. (~S)iT. [Abbreviation for ‘U((~ S)|T)’; sce 28b.] 
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AI6. A. Sxy.~Txy > (3r)(Txv. ~ Svy). 
€. (S.~T) € (T|~S). 

725. C.7T|~S. 

Axiom A17 concerns the finite limiting velocity. 1f there were an infinite 
signal velocity, there could be two non-coincident points x and y with a 
signal from x to y and also a signal from y to x; but this is impossible be- 
cause of the asyminetry of S (T22), However, it might still be the case 
that there are signal vclocitics of any arbitrary finite valuc. Were this last 
to be so, it could happen that from each point before x on the world-line of 
x—if not from x itself—a signal could go to y, and from y a signal to each 
point after x on the world-line of x, Axiom A17 Icads to T26 (with the help 
of T22) and thcreby excludes this possibility, in accordance with relativity 
theory. 

AIT. A. (u)(Tux > Suy).(z\(Txz > Syz) > (Sxy.Syx) V Cxy. 
C. (TEx) © Sy). (TR) © SQ) > (Sxy. Spx) V Cxy, 

126. C. (Tx) < SGy)).(T) € SQ) > Cxy. 
48d. The structure of space. [From here on everything, including 

axioms, is formulated in language C only; the material can be read after 38 
of Part One and 40 and 46 of Part Two.] We say two world-points x 
and y are simultaneous (and write ‘Sim(x,y)’) provided the signal relation 
fails to hold between x and y, and likewise between y and x. This definition 
is in agrecment with that feature of relativity theory according to which 
there is an admissible coordinate system furnishing the same value to the 
time coordinate of both x and y when and only when it is impossible that 
asignal go from x to » or from y to x. (Cf. Reichenbach, Plilosophie der 
Raum-Zeit-Lelire, Berlin, 1928, p. 171; or its English translation, Philosophy 
of space and time, 1958.) 

DS. C. Sim = (~S.~S '). 

The class S(-,a) of world-points that bear the signal relation S to the 
world-point @ we call (following Minkowski) the prior cone of a (see Figure 
5). The class S(a,-) of world-points to which a bears the signal relation 
S we call the posterior cone of a. 1n view of the finite limiting velocity 
(A17), there exists between the prior conc and the posterior cone the so- 
called intermediate region of a; this intermediate region of a is the class 
Sim(-,a) of world-points simultancous with a. A world-line F having no 
coinciden: > with a has a whole segment in common with the intermediate 
region of a (in Figure 5, this segment is labelled ‘F.Sim(-,a)"). Such a 
world-line F has not simply one world-point simultancous with a, but many 
(indeed, infinitely many; see T34 below). While these last-mentioned 
world-points of F arc all simultaneous with a, they are not simultancous 
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with each other, ie. Sim is not a transitive relation (in contradistinction to 
simultancity with reference to a fixed coordinate system), 

Fic, 5. The shaded area represents the effected region H of the point x 
in the space G 

Theorems regarding Sim. Sim is totally reflexive (T27; by T21) and 
symmetric (T28). Coincident world-points are simultaneous (T29; from 
123 and AJ); simultaneous genidentical points are identical (T30; by T19); 
Sint and S arc mutually exclusive, hence Sim and T are likewise (T31 and 
732, by T19). 

127. 
128. 
129, 
130. 
731. 
732. 

Cc. 
C. Syni( Sim). 
Cc. Cc Sim. 
Cc. 
Cc. Sime ~S. 
Cc. 

Reflex(Sim). 

(Sint. Gen) 1. 

Sime ~T. 

Additional theorems. For each world-point x there is on each world- 
line F a world-point simultaneous with x (T33), and cven infinitely many 
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world-points simultaneous with x provided no world-point of F coincides 
with x (T34): 

733. C. (x) [WKF) > 3(F.Sim(-x))]. 
134. C. WI(F).~(CF)(x)> ClsRefi(F. Sim(-,x)). 

Outlines of proofs for T33 and T34 We distinguish two cuses, T33 refers to both, 
734 to the second only _(1) Suppose ¥ coincides with a point of world-line /, T33 then 
follows with the help of T29- and in the special event that «x belongs to #, with the help 
of T27 (2) Suppose xx does not coincide with a point of F. Let Fy=F.S(-.x), be Fy is 
the class of those world-points of F which bear the relation Sto v, and let F2= F.S(%), 
ie Fa is the class of those world-points of F to which ,x bears the relation $, Because 
of the Dedckind continuity of 7 in F (recall T17) there is an upper limit, say y1y for Fi 
(je a world-point of F which separates the class Fy and its complement in F; cf 38b), 
and a lower limit, say yz, for F2(i¢ a world-point of F which separates F2 and its comple- 
ment in F). In accordance with the axiom of the finite limiting velocity (A17), world- 
points )': and y2 are different, indced, it is the case that Ty By A6 there are infinitely 
many points of F between ry and y2, Alll of these intervening points are simultaneous 
with x (cf. Figure 5). 

A spatial class, or space for short, is so to speak a three-dimensional cross 
section of the four-dimensional space-time world, the sectioning being done 
across the time direction—i.e. across all world-lines. Thus our definition 
runs as follows: A space class of world-points which are simultancous 
with each other, the class itself being such that it has in common with cach 
world-line at least one world-point. 

D6. C. SoG) = (x\(y)[Gx.Gy > Sim(x,y)] .(F)[WKF) > 3(G.F)]. 
In view of definition D6 it is the case that every space has exactly one 

point in common with cach world line (T35; by T32): 
735. C. Sp(G).WI(F) > \(G.F). 
Axiom A18 is adopted to assure that for each world-point there is a space 

to which it belongs (T36). To weaken our formulation of Al8 we add to 
it the condition that every world-linc not containing a point coincident 
with x has infinitely many points simultaneous with x. The condition 
can be omitted from T36, becausc by T34 it is alrcady satisfied, Finally, 
137 says that points coincident with points of a space also belong to the 
space. 

ALB. C. (F)[WI(F). ~(CF)x > ClsReft(F. Sim(-.x))] > (3G)(Sp(G). Gx). 
136. C. sm(Sp)x. 
737. C. Sp(G) > (C“GCG). 

What the primitive concepts C and T furnish directly is a topological 
order for time alone. The question arises whether it is possible on this 
same basis, i e. without additional new primitive concepts, also to determine 
a topological order in cach space. This question can bc answered affirma- 
tively with the help of the concept of effected region. We say (D7; sce 
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Figure 5) a class H is the effected region in space G of world-point x, ang 
write ‘Effieg(H,x,G)’, provided H is non-empty and is the class of all Points 

z of G to which a signal (ic. the S-relation) leads from some point y late; 
than x (so to speak, H is the intersection of G with the class of interior 
points of the postcrior conc of x): 

D7. C. Effreg(H,x,G) = Sp(G).[H = ((T|S)(x,-).G)]. 3H). 
Coincident world-points have the same spatial position. Hence we take 

as elements of our space order, i.c. as space-points (‘SpP"), not world-points 
but classes of world-points coincident among themselves— which is to say, 
we count as space-points the non-empty equivalence classes respecting the 
relation C (recall T34-1b): 

D8. C. SpP(F) = (3x)(F = C(x). 

The nearer x lies to space G, the smaller is the effected region of x in G 
Thus each G contains arbitrarily small effected regions. On the other hand, 
an arbitrary world-point of G can be reached by a signal from a given world- 
line provided only the signal emanates from a sufficiently carly world-point 
x of this given world-linc. Hence G also contains arbitrarily large effected 
regions. These considerations suggest that cffccted regions—more pre- 
ciscly: space-point classes that correspond to effected regions—be taken as 
neighborhoods within space G. We shall do this; *Nbd(N,G)' is to mean 
“the class N (of space points) is a neighborhood in space G" (D9). Then 
we shall regard such a class N as a neighborhood of each space-point F in 
G which belongs to it (cf 46b): 

D9. C. Nbd(N,G) = (3x3) [Efieg(H.x,G).(NE SpP).(sm(N)=H)]. 

To show (T40) that in cach space the neighborhoods just defined constitute 
a Hausdorff neighborhood system (recall 46b), we require axioms Al9 and 
A20. Axiom A19 says: If y and r are two non-coincident points of space 
G, then there is an x preceding y and a w preceding v such that no point of 
Gcan be reached both by a signal from a point after x and bya signal froma 
point after v.11 follows from this axiom A19 that there are in G neighbor- 
hoods of the space-points corresponding to world-points y and v such that 
these neighborhoods have no points in common (T38)— viz , the ncighbor- 

hoods corresponding to the effective regions of x and of u in G. 

A19. C. Sp(G). Gy. Gr. ~ Cye > (3x)(qu)[Txy. Taw. ~ (3 [G1.(T |S). 
(T|s).n]} 

T38. C. Sp(G). SpP(F\). SpP(F2).(Fi ¢ G). (F2© G). (Fi # Fr) > (3M) 
(3N2)[Nbd(N,G).N (F\). Nbd(N2,G).NAF2).~3(Nj+No)]- 

Axiom A20 says: If there is a point z in space G which receives a signal 
from a point later than x and also a signal from a point later than y, 
then there is also a point » of which the same is true and which is such that 
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from a later point (ic. a point later than w) there is a signal that Icads to z. 
Jie. if the effective regions F, and F in G of x and of ) respectively have a 
point z in common, then in the intersection of F, and F; there is also an 
effective region, viz. that of u. From this axiom we obtain the following 
result (T39). If N, and N2 are neighborhoods of F in G, then there is a 
neighborhood N, of F in G such that N; is a subclass of N, and a subclass 

of Nz. 

A20. C. Sp(G).Gz.(T|S)(x,z).(T|S)(42) > (au) [(T|S)(x)-(7|S),u). 
(T\S)(uz)]. 

739. C. Sp(G).Nbd(N),G).N,(F). Nbd(N2,G).N2(F) > (3N3)[Nbd(N3,G). 
N3(F).(N3< Ni -Na)]- 

That the two neighborhood axioms Al* and A2* in 46b hold is shown 
by T39 and of T38, respectively (Notice that A2* would not hold for two 
different but coincident world-points, it is for this reason that we usc 
space-points, rather than world-points, as the clements of the neighborhoods 
of our system.) Thus in each spacc the classes of space-points defined here 
(by D9) as neighborhoods constitute a Hausdorff system of neighborhoods 
(740) (Recall that ‘//ausd" is a logical constant; see DI1* in 46c). 

740. C. Sp(G) > Hausd(Nbd(-,G)). 

The foundation just laid enables us to employ all the topological concepts 
defined curlicr (in 46c) with respect to neighborhood systems. Thus, a 
description of any of the topological properties of space can be formulated 
in the signs of our AS—and this mcans in terms of C and T ultimately. 
E.g. we can now construct an axiom (it is A21) stipulating that cach space 
is three-dimensional. Axiom A2I says: If any space G is such that it carries 
a Hausdorff system of neighborhoods, then the class of space-points of G 
has the homogeneous dimension number 3 respecting the neighborhood 

system in G (recall D17* in 46c). Theorcm T4] says the same thing without 
the restrictive condition involving the neighborhood system in G, for in 
view of T40 this condition holds in any case. 

AL. C. Sp(G). Hausil(Nbl(-,G)) > Dinom(3,SpP .suby(G),Nba(-,G)). 
Tl. C. Sp(G) > Dimlom(3,SpP.sub\(G),Nbd(-,G)). 

49. ASs OF SPACE-TIME TOPOLOGY: 2. THE Wlin-SYSTEM 

The present second form is called the Wlin-system. Its single primitive 
sign is ‘Wlin’. This sign designates the class of time relations (in previous 
terms: world-line series) on world-lines; recall D3 in 48b. In the present 
system, world-points are again taken as individuals— however, world- 
points not as particle sliccs, but as the space-time points corresponding 
thereto. Here, therefore, coincident world-points are identical, and henec 
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the relation Cis superfluous. On the other hand, discrimination between the 
various world-lincs now tequires the class W/in of relations rather than 
the relation T ‘The present form of the system makes especially clear how 
the axioms ascribe topological properties to the time order, while also per. 
mitting a representation of the nature of space order [The present system, 
as well as that given in 50, are formulated in language C only; both systems 
may be read after 38 of Chapter C, together with 46 of Chapter F.} 

Axioms Al through A6 say that each of the time relations Win is irre. 
ficxive, transitive, devoid of initial member, devoid of terminal member, 

dense and connected. % 

Al. C. Wlinc hr. 

A2 C. Win Trans. 

A3. C. Wlin(/1)> (mem(11)< mem2(H)). 
Aa, C. Wiin(H)> (mem(H)< mem (H)). 
AS. C. Wlin(H)>(H¢ H?), 

A6. C. Wlin= Connex. 

It follows from Al, A2 and A6 that the relations comprised by Win are 
serics: 

TI. C. Wlinc Ser. 

We can now introduce a sign ‘7’ with roughly the same meaning as that 
imputed to the primitive sign ‘7’ of the first form (48b). Here, however, 
the relation 7° is not transitive; if the present T holds between x and y and 
between ‘and =, and if x and z belong to different world-lines, then this 7 
does not hold between x and 2. 

DIC. T=sm,( Win). 

It follows from Al that 7 is irreficxive (T2), and from AS that T is 
dense (T3): 

T2. C. In(T). 
T3. C. TOT? 

The signs defined next below correspond to the samc signs given in the 
first form (48b, e): ‘W//’ denotes the class of world-lines, ie. of the fields of 
the rclations constituting Win: ‘Gen’ denotes genidentity; and ‘S’ the signal 
relation, 

D2. C. Wl=mem'*Wlin 
D3. C. Gen(x,y) = (9k )( WF). Fx. Fy). 
D4. C. S=T>°. 

Axioms A7 through A9 of the present system are identical in appearance 
with axioms Al2 through A14 of the previous system; for that reason we 
do not list them here explicitly. 
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Axioms Al0, Alf, and A12 below are similar to our preceding axioms 
AIS, Al6, and Al7 respectively: 

Al0. C. WI(F) > (S“F.~F < (~S)*F) 
All. C. WKF) > (S F.~F < (~S ')“F), 

AZ, C. (Tx) © SC9)).(Tx) < SU-)) > (Sxy. Spx) V(x=y). 
From the axioms given to date there follow theorems with the same 

phrasing as our carlicr thcorems T!7 through T22, T24, and T25; we do not 
repeat these theorems here. 

Again, our present DS for ‘Sim’, D6 for ‘Sp’, and D7 for ‘Effreg’ run like 
D5, D6 and D7 of our first form (48d), and are not repeated here. 
From this point our present system continucs in a fashion analogous to 

the previous one, though in some respects it is markedly simpler, Since 
here coincident points are identical, we need not distinguish between 
world-points and spacc-points. Further, neighborhoods can be defincd 
directly as the effected region themselves: 

DB. C. Nbd(F,G) = (3x) Effieg(F.x,G). 

Additional axioms A13 through AIS are to be constructed in analogy 
with axioms AJ8 through A20 of the first form. Thercupon there follows 
a thcorem with the same wording as our earlier T40. 

Axiom A17 stipulates that each space has the homogeneous dimension 
number 3, the formulation of this axiom is somewhat simpler than that of 
the corresponding axiom (A21) in the first system. 

A17. C. Sp(G).Hausd(Nbd(-,G)) > Dimbhon(3,G,Nbd(-,G)). 

And finally, T4! here is analogous to T41 in the first form; 

T41. C. Sp(G) > Dimhom(3,G,Nbd(-,G)). 

50. ASs OF SPACE-TIME TOPOLOGY: 3. THE S-SYSTEM 

We now turn to the third form, called the S-system, The single 
primitive sign of this system is ‘S*, standing for the signal relation. Here, 
as in the second form (49), we regard coincident points as identical. How- 
ever, the concepts of genidentity and of world-linc do not appear in the 
present system. From a certain point of view, this omission is an advan- 
tageous feature of the third form becausc the usc e.g. of the concept of 
genidentity is questionable in some cascs--notably, in the matter-free 
electromagnetic ficld and for particles in quantum theory. (The formula- 
tions that follow are given in language C alone.) 
The first axioms say that S is transitive, irreflexive, densc, and devoid of 

initial and of terminal members. Subsequent axioms are analogous to 
some of the first form; however, a smaller number of axioms suffices for this 
system. We shall not state the axioms lt. but give only the definitions, 
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Definition D} for ‘Sin’ reads like D5 of the first form (48d). 
The present form poses a difficulty in connection with the definition of 

‘Sp’ (“space”). In order that each space be sufficiently comprehensive, our 
earlicr definition (D6 in 48d) required a space to have a point in common 
with every world-line. Our difficulty here stems from the fact that the 
concept of world-line docs not appear in the system. However, we can 
avoid this difficulty and reach the same goal with the help of the concept of 
signal linc (S/n). A signal line is a serics which is contained in S and 
which --this being the essential thing so far as the definition of “space” js 
concerned —is as comprehensive as possible, ie neither the ends nor the 
middle lack a picec. Our definition of ‘S/n’ (D2) exhibits this require. 
ment in the form of a condition that a signal linc not be extensible, i.e, not 
be a proper subrclation of a relation which itsclf is a scrics and is contained 
in S. 

D2. C. Sén(Hy) = Ser(H)).(Hi S).(Ha)[Ser(H2).(U2= S). (1 Hy) > 
Ay=1, i . 

D3. C. Sp(G) = (UI[Gx.Gy> Sim(x,y)] (H)[Sin(H) > 3(G.mem(H))]. 
Our definition of the cffected region is analogous to that given for the 

first form (D7 in 48d), but simpler: 

D4. C. Effreg(F,x,G) = SG).(F=G.S(x,-)).3(F). 

The present definition of ‘Nhd’ (DS) reads like that of the sccond form 
(D8 in 49). 

The axiom relating to three-dimensionality runs here exactly as it did in 
the sccond system (A17 in 49). From this axiom follows the theorem 
about the homogencous threc-dimensionality of each space; this theorem 
has cxactly the same phrasing as T41 in 49: 

TI. C. Sp(G) > Dimhom(3, G,Nbd(- ,G)). 

Jf, with the help of the definitions so far given, we eliminate from T1 all 
the defined axiomatic signs and simplify the result slightly, we obtain 
theorem T2 below. Besides logical constants and variables, this theorem 
contains only ‘S’ as the single axiomatic sign; hence the theorem expresses 
the thrce-dimensionality of spaces as a property of S: 

T2. C. (V2 in Go ~S).(H,)[Ser(H,)-(H) SS) -(H2)[Ser(U).(Ha<S). 
(AS th) > (A, =H))] > 3(G.mem(I1))] > 
Dimbom(3,G,(AF)[(3x)(F=G .S(x,-))-3(F)])- 

Further, cvery other topological property of space order can similarly be 
expressed as a property of the signal relation. In a certain scnsc, therefore, 
it is possible to say that space order is the order among simultaneous points 
determined by the signal relation. 
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51. DETERMINATION AND CAUSALITY 

51a. The general concept of determination. (Formulation A may be read 
after 19, formulation C aftcr 33) There are two primitire signs: ‘Magn’ 
and ‘Pos’. The sentence ‘Magn(f)’ says “f is a state magnitude’; this 
means that fis a function and that to cach position of the domain in qucs- 
tion f associates either a quantity (recall 41a), say a real number or an 
ytuple of real numbcrs, or else a quality. The sentence ‘Pos(//)’ says “// 
is a two-placc positional relation between positions”; the positional relations 
determinc the order of the positions, but not their nature. 
We take positions as individuals (or as individuals of the first sort, in 

case the values of the state magnitudes—e.g. rcal numbers—arc taken as 
individuals of the sccond sort in a two-sorted language). Individual 
variables ‘x’, ctc , thus refer to positions. 
The relation // is called a positional correlator between classes F and G, 

and we write ‘PosCorr(/1,F,G)', provided: If K, is any positional relation, 
and K, and K; arc the subrelations of K, for the clements of F and of G 
respectively, then H is a correlator between K, and K; 

DI. A. PosCorr(11,F,G) = (K\)(K2)(K3)[Pos(K1) (0) Kaxy = Kixy. Fx. 
Fy).(x)(Q)(K3xy = Kixy Gx.Gy) > Corr,(/1,K2,K,)]- 

. PosCorr(H,F,G) = (K)[Pos(K) > Corr(H,K in F,K in G)]. 

A positional correlator between F and G is a magnitude cor elator between 
Fand G with respect to the class N of state magnitudes (we write: ‘MagnCorr 
(H,F,G,N)’) provided cach state magnitude of class N has at cach position 
of F the samc valuc that it docs at the position of G corresponding thereto 
under H 

D2. MagnCorr(H,F,G,N) = PosCori(H,F,G).({\(x)Q)[NUY). xy. Fx. Gy 

> Magn(f).(f)=f0))]- 
The class F of positions is called a determining class of position x with 

respect to the class N of state magnitudes (‘“Der(F,x,)’) provided it is the 
case that the values of the state magnitudes of N at x are determined by 
their values at the positions of F (morc precisely: if, on the basis of a posi- 
tional correlator //, a position y has the same positional relations to a class 
G of positions as position x docs to class F, and if // is also a state magnitude 
correlator between F and G with respect to N, then the state magnitudes of 
Nat y have the same values that they do at x): 

D3. A. Det(F.x.N) = (N(N() > Magn(f)) FGA NUI NLM 
(Fy = FuV(u=x)) .(u)\(Gau = GiuV(u=y)) « PosCorr(H,Fy,G.) « 
Hxy. MagnCorr(I1,F,G,N).N(f) > (f()=f0)] 

C. Det(F,x,N) = (NS Magn) . (G)(y)(H)(f) [PosCorr(H, FY {x}, 
GV{y}). Hxy. MagnCori(H,F,G,N).N(f) > (f)=f))]- 
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51b. The principle of causality. (What follows is phrased in language ¢ 
only, it may be read after 37.) With the help of present concepts, and some 
earlier ones from 48-50, we can now formulate various versions of the 
principle of causality We assume at the outsct the following interpreta. 
tions of present concepts: individuals (positions) are space-time points, ig 
we employ language form III explained in 39d, Pos is the class of gcometric 
relations between space-time points (e.g. distance of 3 em.); and Magn ig 
the class of physical magnitudes (c.g. tempcrature) 

Version 1. “There is a non-cmpty finite class N of state magnitudes 
such that the state at every space-time point x with respect to N is deter- 
mined by the state with respect to N at a class F of space-time points not 
including x”: 

CP). C. (3N)(a3F)[3(V). ClsInduct(N).~ Fx. Det(F,x,N)]- 

Version 2. Suppose some physical state magntiudes are specificd, and 
M is detined as the class of these specified magnitudes. The causality 
principle with respect to M runs as follows: “The state at every space-time 
point x with respect to M is determined by the state respecting M at a class 
F which does not include x": 

CP. (x)(3F)[~ Fx. Dei(F,x,M)]. 

Version 3. Appcaling to the signal relation (48c), we can express the 
temporal relation between a point x and a determining class F, whether in 
respect to an unspccified finite class N of state magnitudes or in respect to 
a class M defined by enumeration. We choose the second route (as in 
CP,), for the sake of simplicity, “The state at any space-time point x with 
respect to M is determincd by the state respecting M at a class F of points 
which temporally precede x, i.e. which belong to the prior cone S(~,x)”: 

CPs. C. (x)(3F)[(FE S(-x)). Det(F,x,M)). 
Version 4. A stronger assertion is the following one. “The statc at x 

with respect to M is detcrmined by the state respecting M at an arbitrary 
spatial cross-scction F through the prior cone of x" (regarding ‘Sp’, see 
48d): 

Py. C. (x)(F(G)[Sp(G).(F=G. S(-x)).3(F)> Det(F,x,M)]. 

A similar assertion of still greater strength makes the same claim for any 
spatial cross-section through the prior cone or through the postcrior cone; 
ie. in this casc— the case of classical physics—dcterminism is assumed in 
both directions To formulate this assertion, we simply replace ‘S(-,x)’ by 
(SGx)V S(x,))’ in CPy. 



Chapter H 

ASs of biology 

52. AS OF THINGS AND THEIR PARTS 

52a. Things and their parts. In 52 and 53 there is constructed an AS 
which is a small portion (slightly modificd) of the AS sct up by Woodger 
[Biology] for certain basic concepts of biology, notably of genctics. The 
prescnt section contains a pre/iminary part concerned with things in general, 
without specialization to biology. This AS can therefore scrve as a basis 
for other ficlds besides biology. The next section enlarges this AS into an 
AS with certain primitive concepts of a biological character. (The formula- 
tions of 52a and 52b given in language A can be read after 17; those given 
in language C, after 35.) 
The present AS treats part-rclations and time-relations between space- 

time regions. These regions are taken as individuals, ie. we cmploy 
language form | explained in 39b. The primitive signs of this AS are: ‘P’, 
‘Tr’, ‘Ti’. (Woodger uses ‘P’, ‘T’,— instcad ) Interpretations of the first 
two agree with those given in 39a: ‘Pxy’ is read “‘x is a (spatial, or temporal, 
or spatio-temporal) part of »”, and ‘77(x,y)’ is read ‘“‘x is temporally earlicr 
than y—-more exactly: every part of x is temporally carlicr than every part 
of y”. Our interpretation of the third primitive sign runs: *7h(x)’ means 
“x is a thing”. 

Relation P is transitive: 

Al. A. Pxy.Pyz> Pxz. 
C. Trans(P). 

We say that x is the stm of the class F, and write ‘Si(x,F)’, provided the 
elements of F are parts of x and for cach part y of x there is an clement z of 
F such that y and z have at least one part in common: 

D1. A. Su(x,F) = (u)(Fu> Pux).(y)[Pyx > (32(gw)(Fz. Pury. Pz). 
C. Si(x,F) = (FE P(-,x)).C)[Pyx > (32)(F2-(P "[P)yz)]- 

Every non-cmply class has exactly one sum: 

A2. A. (3u)(Fur) > (3x)(9)(Suly,F) = (=+)). 
C. 3(F) > (Su-,F)). 

[Axiom A2 shows that ‘Su’ is designed so that any description of the form 
‘Su‘Q’ (see D35-2), for @ a non-cmpty class, satisfies the uniqueness con- 
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dition. Instead of the two-place predicate ‘Sy’, therefore, we could just as 
well take a onc-place functor ‘sy’ as a primitive sign (recall 18b); in this case 
we would have to take as the (improper) sum of the cmpty class (su(A)) 
some fixed region, c g the empty region ] 

Of the theorems which follow from Al and A2 we give two. The first 
says that relation P is totally reficxive. 

Tl A. Pxx. 

C. Reflex(P). 

The sccond theorem runs as follows: If x and y' are parts of each other, then 
they arc identical (i.c. between two different individuals the relation ? holds 
in at most one direction): 

12. A. Pxy.Pyx > (x=y). 

CG (PPNCH. 

The time relation 77 is asymmetric: 

A3. A. Tr(x,y) > ~Ti(),,x)- 
C. AS(Tr). 

If a (the) sum of Fis carlier (7r) than a (the) sum of G, then F and G are 
not empty and every clement of F is earlicr than every clement of G; and 
conversely : 

Aa. A. (30) (3r)[Su(u,F)« Su(v,G). Tr(ne)] = (30(Fx) . (3x)(Gx) .0() 

(Fx.Gy > Ti(x)). 
C. TH(SW'F,Su'G) = 3(F).3(G).)(Ex.Gy > Tr(x,y)). 

If no part of x is later than y, then cvery individual later than y is also 
later than x: 

AS, A. (u)(Pux > ~Ti(y,u)) > (e)(Tr(y,e) > Tr(x,v)). 

C. (PC.x) © ~Tr(y,-)) > (TH) € Trx,-)). 
If no part of x is earlicr than y, then every individual earlier than y is also 

earlier than x: 

AG. A. (u)(Pux > ~Tr(u,x)) > (v)(Tr(e.y) > Tr(e,x))- 

C. (PG) © ~ TH) > (Tr) © TH). 

Theorems. Rclation 7r is transitive: 

T3. A. Tr(x,y).71(y,2) > Tr(x,z). 
C. Trans(Tr). 

If x is earlier than y, then x is earlicr than every part of y: 

T4. A. Tr(x,y).Pzy > Tr(x,z). 

C. (Tr|P-) < Tr. 



52. THINGS AND THEIR PARTS 215 

If x is a part of something which is carlier than z, then x itself is earlier 
than z: 

TS. A. Pxy.Tr(y,z) > Tr(x,z)- 
C. (P|Tr) < Tr. 

Jf x is carlier than y, then any part of x is earlier than every part of y: 

T6, A. Tr(x,)).Pux.Puy > Tr(u,c). 
C. (P|Tr|P-) < Tr. 

If w is earlier than x and x is a part of y and y is earlier than z, then wis 
earlier than z: 

TT. A. Tr(w,x).Pxy.Tr(y,2) > Tr(w,z)- 
C. (Tr|P|Tr) < Tr. 

Relations Tr and P are mutually exclusive: 

T8. ‘ Tr(x,y) > ~Pxy. 
Tro ne. 

52b. The slices of things. A spacc-time region x is said to be momentary 
provided no part of x is carlicr than any other part of x: 

(u)(v)(Pux. Pox > ~Tr(uv)). 
~3(Tr in P(-,x)). 

Every individual has momentary parts: 

AT. A. (x)(3))(Pyx. Mom). 
C. 3(P(-,x). Mom). 

As in 39a, so here ‘S/i(x,y)’ means “x is a slice of the thing y". This 
relation holds between x and y provided y is a thing and x is a maximal 
momentary part of » (i.e. x is a momentary part of y and there is no momen- 
tary part of y of which x is a proper part): 

D3. Sli(x,y) = Th(y).Mom(x). Pxy. ~(3z)(Mom(z).Pzy.Pxz.(x#y)). 

Theorems. Two different slices of a thing have no parts in common: 

19. A. Sli(x,z). Sli(y,2).(x#)) > una. Puy). 
C. (J in Sli(-, z)) < ~(P '|P) 

Of two different slices of a thing, onc is carlier than the other: 

TIO. A. Sli(x,z).Sli(),z).(x#y) > Tr(x,y) VTr(y,x). 
C. Connex(Tr in Sli(-,2)). 

A slice x of y which is earlier than all other slices of » we term an initial 
slice of y, and write ‘/S/i(x,y)' (D4). A slice of x of y which is later than all 
other slices of y we term an end stice of y, and write ‘ES/i(x,y)’ (D5). 

D4. A. ISli(x,y’ Sli(x,y).(2)[Sli(z,y).(2# x) > Tr(x,2)]- 

C. ISli(x,y) = Slilx,y).(Sli-,y).~ {x} © Tr(x,)). 
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DS. A. ESli(x,y) = Sli(x,y).(2)[Sli(z,y).(2#x) > Tr(z,x)]. 
C. ESli(x,y) = Sli(x,y).(Sliy). ~ 23 © Tr(-x). 

Axioms. Every thing has at least one initial slice (A8) and at least one 
end slice (A9): 

A8&. A. Th(x) > (3y)ISIi(y,x). 
C. Th < mem, Sli). 

AY. A. Th(x) > (3y)ESIi(y,x). 
C. Th < mem,(ESli). 

Theorems. Every thing has exactly one initial slice (T1!1; from A8 and 
T10) and exactly one end slice (T12; from A9 and T10): 

TU. A. Th(x) > (ay)(2)(/Sli(z,x) = (2=y)). 
C. Th(x) > 1(USIi(-,x)). 

T12. A. Th(x) > (3y)(z(ESIi(z,x) = 
C. Th(x) > 1(ESIi(-,x)). 

Every thing has at least one slice (by A8): 

T13. A. Th(x) > (3y)Sli(y,x)- 
C. Th © mem,Sli). 

If y is a momentary part of a thing x, then x has exactly one slice z of 
which y is a part: 

T14. A. Th(x).Pyx.Mom(y) > (32z)(u)[Sli(u,x).Pyu = (u=z)]. 

C. Th(x). Pyx.Mom(y) > 1(Sli(-,x).P(»,-))- 
Every thing is identical with the sum of its slices: 

TIS. A. Th(x).(y)(Fy = Slily,x)) > (2)(Su(z,F) = (2=2)). 
C. Tix) > (x= SutSli-,x). 

52c. The time relation. The following is phrased only in language C, and 
may be read after 38. 
Theorem. Respecting the slices of a thing, the time relation 7r is a series 

(from A3, T3, and T10): 

T16. C. Ser(Tr in Sli(-,z)). 

Axioms. Bctween two different slices of a thing there is always a third 
slice: 

AMO. C. (Tr in Sli(-,z)) < (Tr in Sli(-,z))?. 
Respecting the sliccs of a thing, the time relation 7r is a Dedekind 

relation: 

All. C. Ded(Tr in Sli(-,x)). 

Theorem. Respecting the slices of a thing, the time relation Tr is a 
series with Dedekind continuity (from T16, A10 and All): 

T17. C. DedSer(Tr in Sli(-,x)). 

y)) 
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53. AS INVOLVING BIOLOGICAL CONCEPTS 

53a. Division and fusion. Following Woodger (Biology], the AS des- 
cribed in 52 above will now be broadencd into a biological AS by thc 
addition of several new primitive signs and axioms. What we give here is 
only the first part of Woodger’s system. Our formulation A in 53a can be 
read after 19, formulation C after 35. 

Additional primitive signs here are: ‘Org’, ‘Y’, ‘Cell’ and ‘Orgs’. Ex- 
planations of them run as follows: ‘Org(x)’ means “x is an organic unit” 
(examples of an organic unit are an organism, an organ, a ccll); ‘¥xy’ 
means “The organic unit x is transformed into the organic unit y” {i.e. x 
divides into several parts of which one is » (e.g. cell division), or x fuses 
with one or more other units to produce y (e.g. cell fusion)]; ‘Ce//(x)’ meaus 
“x is a cell’; ‘Orgs(x)’ means “x is an organism”. A cell is here conceived 
as a thing, as temporally extended, in distinction to the slices of cells 
(Sli**Cell); and the same for an organism. The duration of an organic unit 
—and thus, in particular, of a cell or an organism—is counted from the 

instant of its production (e.g. by division or fusion) to the instant of its end 
(e.g. through the instant of its division, or of its fusion with other units of 
the same kind). 

Axioms. Each organic unit is a thing: 

Al2. A. Org(x)>Th(x). 

C. OrgoTh. 

The members of Y are organic units: 

AI3. A. Yxy>Org(x).Org(y). 
C. mem(Y)< Org. 

Suppose that Yxy, that w is an (the) end slice of x, and that v is an (the) 
initial slice of y; then u and v are different, and cither wv is part of v or vis 
part of u: 

Al4. A. Yxy. ESli(u,x).ISli(v,y)> (uF v).(PuvV Pou). 
C. (ESIil ¥|ISli)<(PYP-!).J. 

Now we define division (‘Div’) and fusion (‘Fs’). We say; x is trans- 
formed by diviston into y (*De(x,y)’) provided Yxy and an (the) initial slice 
of y is part of an (thc) end slice of x (D6) Again, we say: x is transformed 
by fusion into y' (‘Fs(x,y)’) provided Yxy and an (the) cnd slice of x is part 
of an (the) initial slice of » (D7). 

D6. A. Do(x,y) = ¥xy.(gu)(gv)[ESli(u,x)./Sli(v,y). Pou]. 
C. Dv = Y.(ESli-“|P-"ISHi). 

D7. A. Fs(x,y) = Y¥xy.(3u)(gv)[ESli(u,x) .JSli(v,y). Puc]. 

C. Fs = (¥.(ESHi "|P\ISIi)). 
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The axioms which follow are formulated more simply with the help of 
these definitions. 

If x is transformed by division into y, then x is the only clement which 
bears the relation Y to y: 

AIS. C. Do(x,y) > (u)( Yuy = (v=2)). 
C. Du(x,y) > (x= Y‘y). 

If x is transformed by division into y, then there is a z different from y 
such that x is transformed by division into z: 

Al6. A. De(x,y) > (32) [(z#y). Do(x,2)]- 
C. Dv < (DoJ). 

If x is transformed by fusion into y, then y is the only clement to which 
x bears the relation ¥: 

AIT. A. Fs(x,y) > (u)( Yxu = (u=y)), 
C. Fs(x,y) > (y= ¥-"x). 

If x is transformed by fusion into », then there is a z different from x 
which is transformed by fusion into y: 

AB. A. Fs(x,y) > (32)[(24 x). Fa(z,y)]- 
C. Fs < (J|FS). 

Theorems. Relation Y is the union of relations Du and Fs: 

TI8. A. Yxy = Dv(x,y)VFs(x,y). 
C. Y= DiVFs. 

Relation Y is irrcflexive (T19), intransitive (T20), and asymmetric (T21): 

TI9, A. ~ ¥xx. 
C. Inr(¥). 

T20. A. Yxy. Yyz>~ ¥xz. 
Cc. Intr(Y). 

T21. A. Yxy>~ Yyx. 
C. As(Y). 

Relation Du is one-many (T22) and asymmetric (T23): 

22, Un,(Do). 

723, A. Dr(x,y)> ~ Do(y,x). 
C. As(Dv). 

Relation Fs is many-one (T24) and asymmetric (T25): 

124. Un Fs). 
125. A. Fs(x,y)> ~ Fs(y,2)- 

C. As(Fs). 
Relations Dv and Fs have no first members in common (i.e. no individual 

is transformed both by division and by fusion) (T26), and no sccond 
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members in common (i.c. no individual is produced both by division and 
by fusion) (T27): 

726. A. ~(3x)(Gy)(32)[DUC2,y). Fo(x,2)]- 
C. ~3(mem,(Dv).mem(Fs)). 

727. A. ~(3x)(3y)(32z)[Do(x,2). Fs(y,2)]- 
C. ~3(mem,(Dv).mem,(Fs)). 

53b. Hierarchies, cells, organisms. (Formulations given here in language 
A—these occur only in DI1 and in the axioms—can bce read after 19; those 
given in language C, after 36.) We turn now to the /ogica/ concept of 
hierarchy, a concept especially uscful in biology. A relation H is called a 
hierarchy (‘Hier(H)') provided the following three conditions obtain: H is 
asymmetric and one-many; H has exactly one initial member; and every 
member is only finitely many H-steps removed from this initial member, 
The concept of hierarchy is related to that of progression (37a); the difference 
is that a progression is also many-one (hence one-onc) and has no terminal 
member, whercas a hierarchy permits bifurcation in the direction away 
from the initial member and allows the occurrence of terminal members. 

D8. C. Hier(H) = As(H). Uny(H). \init(H)).(x)Q)[init(H)x.mem,(H)y 
> H>%x,y)]. 

If x is a first-place member of Du, then the relation Dv with respect to 
the Dv-posterity of x (recall 36c) is a hierarchy: 

T28. C. mem,(Dv)x > Hier(Dv in Dv2(x,-)). 

Such a hicrarchy is called a “Dv-hierarchy": 

D9. C. DvHier(H) = (3x)[mem,(Dv)x.(H= Dv in Dv2%x,-))]. 
Asubrelation H of Y is called dendritic, symbolically ‘Dend(H)’, provided 

H is formed by selecting some ¥Y-member x and by limiting the field of Y to 
those elements that can be reached from x by a finite chain composed 
arbitrarily of Y- and Y-!-steps: 

D10. C. Dend(H) = (3x)[mem(Y)x.(H= Y in (YVY 1)20(x,-)})]. 

If two dendritic relations have a member in common, then they are 
identical: 

729, C. Dend(H).Dend(K).3(mem(H).mem(K)) > (H=K). 

We say x is an organic part of y, and write ‘OP(x,y)’, provided: x and y 
are different organic units; more than one slice of x is a part of »; and if uv 
is a slice of x and v a slice of y such that w is neither earlier nor later than v, 
then w is a part of v. 

D1. OP(x,y) = Org(x).Org(»).(x#y)-(3¥)(32)((w# z). Sli(w,x). Sli(z,x). 
Pwy.Pzy).(u)(v) [Stiu,x).Sli(v,y).~ Tr(u,v).~ Tr(vu) > Pur]. 
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If an organic unit is a part of another organic unit, then the first is an 
organic part of the second: 

130. C. [(P.J) in Org]< OP. 

Bclow are several axioms involving ‘Ce//’ (cell) and ‘Orgs’ (organism), 
The first (A19) is to the effect that for every cell y there is a cell x such that 
Yxy (i.e. y results from x by division or fusion): 

AI9. A. Cell(y)>(ax)(Cel(x). Yxy). 
C. Cell< mem, Y in Cell). 

Evcry organism has a cell as a (proper or improper) part: 

A20. A, Orgs(x)>(3y)(Cell(y).Pyx). 

C. Orgs(x)> 3(Cell. Px). 
Every cell is an organism or an organic part of an organism: 

A2I. A, Cell(x)> Orgs(x)V (3y)(Orgs(y)-OP(x,))). 
C. Cell (OrgsV OP“Orgs). 

If x is an organism whose initial slice is an initial slice of a cell that has 
resulted from fusion (i.¢. if x begins with a zygote), then x has not resulted 
from division: 

A22. A. Orgs(x) « (3y)(32)(3u)[/SHi(y,x) « Cell(z) . 1STi(y,z) « Fs(u,z)]> 

~(32)(Do(v,x). 
C. Orgs(x).(32)[(Cell.mem(Fs))z.(1Sli*x = ISli*z)] > ~mem,(Dv)x. 

Organisms are organic units: 

A23. A, Orgs(x)> Org(x). 
C. Orgs< Org. 

It now follows (from A21, A23, and D11) that cells are organic units: 

T31. C. Cell Org. 

54. AS FOR KINSHIP RELATIONS 

54a. Biological concepts of kinship. The AS hcre prescnted treats the 
relations of kinship between humans, The treatment in 54a considers 
biological concepts of kinship, that in 54b deals with Icgal concepts of the 
same. Things, humans in particular, are taken as individuals; thus use is 
made of language form {A explained in 39b. It is a conscquence of this 
choice that temporal relationships cannot be expressed. (For ASs in 

which concepts of kinship are further analyzed and time relations are also 
examined, see 55d—problems 25, 26, 27.) The sense intended for the bio- 
logical concepts introduced below may be more readily grasped if it is 
understood that we say x is father of y provided x has engendered y; that 
x is mother of » provided x has borne y; that x is husband of y provided x 
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has engendcred achild by y;ctc. [Insofar as 54a is given in formulation A, 
it may be read after 17; in formulation C, after 36.] 

Primitive signs: Signs ‘Par’ and ‘MI’ may be thought to designate respec- 
tively the relation Parent and the class of male humans. For definitions of 
‘Hu’ (human), ‘F/' (female), ‘Fa’ (father), ‘Ch’ (child), ‘Son’, ‘GrPar’ (grand- 
parent) in language A, sec 15c; for that of ‘Bro’ (brother), see 17b. Pro- 
ceeding similarly, it is an casy mattcr to define ‘Dau’ (daughter), ‘GrFa’ 
(grandfather), ‘GrMo' (grandmother), ‘Sis’ (sister), ‘Sih’ (sibling); and also 
grandchild, grandson, grand-daughter, etc. For scveral of these concepts, 
and for some additional ones, definitions in language C can be found in 30c. 
We begin with definitions of ‘Mo’ (mother), ‘dnc’ (ancestor), ‘Des’ 

(descendant), ‘//us’ (husband, in the biological sense explained just above) 
and ‘Wif’ (wife, in a similar biological sense). [Our definitions of ‘Anc’ 
and ‘Des’ appear only in formulation C; cf. 36b.] 

Di. Mo(x,)) ar'( x,y) «FCx). 
D2. C. Ane=Par>®, 
D3. C. Des=Ch>°. 
D4. A. Hus(x,y)=(3z)(Fa(x,z). Mo(y,z)). 

C. Hus=Fa\|Mo-'. 
DS. A. Wiflx,y) = Hus(y,x). 

C. Wif= Hust, 
Several theorems follow at once from these definitions, even before 

axioms arc laid down; such theorems are thcrefore provable in the basic 
language (recall 42a), and hence are L-true. 

Every human is male or female; and conversely, every male or femalc 
human is a human. 

TI. A. Hu(x) = MAx)V FIX). 
C. Hu = MIVFI. 

A parent of somcone is cither his father or his mother, and conversely: 

T2. A. Par(x,v) = Fa(x,y)V Mo(x,y). 
C. Par = FaV Mo. i 

The classes M/ and F/ arc mutually exclusive (T3), hence so also are the 

relations Fa and Mo (T4): 

T3. A. ~(3x)(MAx). F(x). 

C. ~3(MI. FI). 
T4. A. ~(3x)(3y)(Fa(x,y).Mo(x,y)). 

C. ~3(Fa. Mo). 
The relation Hus is asymmetric. (The samc holds for the relation Wif; 

consequently, both Hus and Wif are irreflexive.) 

TS. A. Hus(x,y) > ~ Hus(y,x). 
C. As(Hus). 
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Axioms. Relation Fa is one-many, i.c. everyone has at most one father 

(Al). Similarly, Mo is one-many (A2). And again, Avec is irreficxive, i.e. 
no onc is his own ancester (A3). 

Al. A. Fa(x,z).Fa(y,z) > (x=y). 
C. Un,(Fa). 

A2. A. Mo(x,z).Mo(y,z) > (x=y). 
C. Un,(Mo). 

A3. A. ~ Anc(x,x). 
C. Irr(Ane). 

Theorems. From Al and A2 it follows that everyone has at most two 
parents (T7), and that if someone has two parents, they are his father and 
his mother (T8): 

T7. C. ~3,,(Par(-,x)). 

TB. C. 2(Par(-,x)) > (3u)(30) [(Par(-,x)={u,v}) .(u= Fax). (v= Mo'x)], 

From A3 it follows that these relations are irreflexive and asymmetric: 
Ancestor, Parcnt, Father, Mother, Descendent, Child, Son, Daughter, and 
further all powers of these relations (viz. Grandparent, Great-grandparent, 
Grandfather, etc.): 

T9. C. {Anc, Par,Fa,Mo, Des,Ch,Son, Dau, Par?, Par3,...}< (rr. As). 

54b. Legal concepts of kinship. Here we extend the system of 54a by 
adding to it legal concepts. 

Additional primitive signs: ‘LPar’ and ‘LHus’. We read ‘LPar(x,y)’ as 
‘x is a legal parent of y” (i.e., the parenthood, whcther natural or by 
adoption, is legally recognized); and ‘LHus(x,y)’ as “x is a legal husband 
of y” (i.c. the male x at some time in his life legally marricd the female y). 
[With the exception of D4] and D42, 54b in formulation A can be read 
after 17; 54b in formulation C can be read aftcr 36.] 
We begin with definitions of additional legal concepts: ‘LFa’ (legal 

father), ‘LCh’ (Icgal child), ‘LSon’ (legal son), ‘LWif” (Icgal wife), ‘LSp’ 
(Icgal spousc), ‘EPar’ (x is a legitimate parent of y, i.c. both x and a legal 
spouse of x are legal parents of y), ‘EFa’ (legitimate father), ‘EC/r’ (legitimate 
child), ‘ESon’ (legitimate son), ‘ESib' (legitimate sibling), ‘EBro’ (legitimate 
brother), ‘/nPar’ (parent-in-law), ‘/nFa’ (father-in-law), ‘/nCh’ (son-in-law 
or daughter-in-law), ‘/nSon’ (son-in-law), ‘/nSib’ (brothcr-in-law or sistei- 
in-law), ‘InBro’ (brother-in-law), ‘StPar’ (step-parent), ‘S1Fa’ (stepfather), 
‘SiC (stepchild), ‘StSon’ (stepson), ‘HSib’ (half sibling, i.e , half brother or 
half sister), ‘HBro’ (half brother), ‘S/Sib’ (step-brother or stcp-sister), 
‘St Bro (step-brother), ‘UnAn’ (uncle or aunt), ‘Un’ (uncle), ‘NeNi’ (nephew 
or niece), ‘Ne’ (nephew), ‘Co’ (male or female cousin), ‘M/Co’ (male 
cousin), ‘EGrPar’ (legitimate grandparent), ‘EGrCh’ (Icgitimate grand- 
child), ‘EGrSon’ (legitimate grandson). [Corresponding relations of 
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female persons (‘LMo’ (legal mother), etc.) are readily defined in analogy 
with D6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, and 40 by 
replacing ‘M/’ by ‘F/’ in the definiens.] 

D6. 
D7. 

D8. 

Di. 

D12. 
D13. 
D14, 
DIS. 

D116. 
DI7. 

Di18. 
D19. 
D20. 
D21. 

D22. 

D24. 
D25. 
D26. 
D27. 

D28. 
D29. 

D30. 
D31. 

D32. 

DIO. 

a> 

a> AP a> A PP Arar 

O> OP OP 

. InPar(x,y)= 

. InPar = EPar\LSp. 

. InSib(x, 

. InSib=(ESib|LSp)V (LSp|ESib). 

» StPar(x,y; 

. StPar =(LSp|L Par). ~L Par. 

 UnAn(x,y) 

. Undn=(ESibV InSib)|EPar. 

LFa(x,y)=LPar(x,y)M(x). 

LCh=LPar-. 
LSon(x,y)=LCh(x,y). MU(x). 
LWif(x,y)= LHus(y,x). 

. LSp(x,y)= LHus(x,y)V LWiflx,y). 
. LSp=LHusV LWif. 
. EPar(x,y)=LPar(x,y).(32)(LSp(x,z).LPar(z,y)). 
. EPar=LPar.(LSp|L Par), 

EFa(x,y)= EPar(x,y). M(x). 

ESon(x,y)= ECh(x,y). M(x). 
. ESib(x,y) = (gu)(3v)(ECh(x,u) . EFa(u,y). ECh(x,v). EMo(v,y). 
(x#y)). 

. ESib=(ECh| EFa).(ECh| EMo).J. 
EBro(x,y)= ESib(x,y). Mx). 

3z)(EPar(x,z).LSp(z,y)). 

InFa(x,y)= InPar(x,y). MI(x). 
InCh(x,y)= InPar(y,x). 

InSon(x,y)= InCh(x,y). M(x). 
= (32) [(ESib(x,z).LSp(z,y))V(LSp(x,z). ESib(z,y))]- 

InBro(x,y’ Sib(x,y).MUx). 

2)(LSp(x,z).LPar(z,y). ~ LPar(x,y)). 

StFa(x,y)= StPar(x,y). M(x). 

SiCh(x,y)= St Par(y,x). 

StSon(x,y)= StCh(x,y). M(x). 

» HSib(x,y)= (3z)(LCh(x,z).LPar(z,y)).(x# y). ~ ESib(x,y). 
. HSib=(LCh\LPar).J.~ ESib. 
HBro(x,y)= HSib(x,y). M(x). 

. StSib(x,y)= (32)[LPar(z,x).StPar(2,y)]- 
StSib=LCh\StPar. 
StBro(x, y)= StSib(x,y).MI(x). 

2) [(ESib(x,z) V InSib(x,z)) . EPar(z,y)]. 

Un(x,y)= UnAn(x,y). M(x) 
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D33. ——-NeNi(x,y)= UnAn(y,x). 
D34.—-Ne(x,y)= NeNi(x,y). Mi(x). 
D35. A. Co(x,y)=(3u)(gv)(ECh(x,u). ESib(u,v). EPar(v,))). 

C. Co= ECh| ESib| EPar. 
D36. MICo(x,y)= Co(x,y). M(x). 

D37. A. EGrPar(x,y)=(3z)(EPar(x,z). EPar(z,))). 
C. EGrPar=EPar?. 

D38. EGrFa(x,y)= EGrPar(x,y). MU(x). 
D39. EGrCh(x,y)= EGrPar(y,x). 
D40, EGrSon(x,y)= EGrCh(x,y). M(x). 

The definitions for ‘EAnc’ (legitimate ancestor) and ‘EDes’ (Icgitimate 
descendent) we give only in formulation C; these definitions arc analogous 
to D2 and D3. 

D4i. EAnc= EPar>®. 

Da2. EDes=EAanc~. 

As in 54a so here many thcorems follow from the definitions alone, 
without the intcrvention of axioms; howevcr, we shall not introduce any 
of them at this point. 

Axioms. At first glance onc might think that some of these legal con- 
cepts might be regulated by axioms analogous to those laid down for their 
counterpart biological concepts (Al through A3 in 54a). Such is not the 
case, however. The relations ‘LFa’, ‘LMo’, ‘EFa’, and ‘EMo’ are not one- 
many, for in the course of timc these relations can be dissolved and replaced 
by relations to other persons. Further, the relation ‘LAnc’ is not abso- 
lutely irreflexive: while it is highly unlikely that at a certain moment a man 
could be his own Icgal grandfather, it is not impossible that between two 
men a and b of approximatcly equal age legal patcrnity by adoption first 
goes in one dircction and then is dissolved and reinstituted in the opposite 
direction; in this case ‘LGrFa(a,a)’ would hold. [This possibility can be 
excluded only by laying down spccial legal conditions governing adoptions, 
e.g. conditions requiring a minimum difference in age.] And again, thcre 
are no simple rclations between Fa and LFa, since each of these relations 
can occur without the other; the same applies to Mo and LMo, to Hus and 
LHus, etc. 

Neverthcless, axioms can be extracted from the usual legal conditions 
which prohibit legal parenthood and legai marriage in ccrtain cascs. The 
axioms A4 through A10 which follow illustrate this possibility. 

In a legal marriage, the husband is male (A4) and the wife female (A5): 

Aa. A. LHus(x,7)> MU(x). 
C. Mem (Lilus)< Mi. 

AS. A. LHus(x,y)> Fy). 
C. mem2(LHus)< Fl. 
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It is prohibited that x marry y if x is (in the biological sense) father of y 
(A6), or son of y (A7), or brother of y (A8): 

A6, A. Fa(x,y)> ~LHus(x,y). 
C. Fac ~LHus. 

A7 and A8 arc formulated similarly. 
Legal parenthood is prohibited in the case of identity (A9), the sibling 

relation (A10), and certain other kinds of kinship: 

AQ, A. ~LPar(x,x). 
C. drr(LPar). 

AlO. A. Sib(x,y)> ~ LPar(x,y). 
C. Sihc ~LPar. 

Many prohibitions against marriage cannot be expressed in thc simple 
system above because they contain temporal specifications. Among these 
e.g, are the prohibition against bigamy, against marriage between x and y 
if x is legal father of y—or legal son of y, or legitimate brother or half- 
brother of y (all such prohibitions involve the concept of simultaneity); 
also to be mentioned herc is the minimum-age requirement for marriage. 
The samc remark applies to similar limitations on Icgal parcnthood (in 
cases involving adoption). All such conditions require for thcir formula- 
tion a more complicated language form (cf. Problem 27 in 55d). 



Appendix 

55. PROBLEMS IN THE APPLICATION OF SYMBOLIC LOGIc 

Wc take “AS” as abbreviation for “axiom system”. The degree of 
difficulty of each Problem is specificd at the outset by a notation like 
“(Diff. 1]”; I—quite easy; Il—easy; 11l—moderately difficult; 1V—quite 
difficult. In each problem, the aim is to formulate the indicated AS in 
symbols, c.g. in one of the languages A and C described in this book. The 
material for the AS is to be found in the publications referred to. 

55a. Set theory and arithmetic 

Problem 1. [Diff. IV.] AS of set theory according to J. von Neumann 
(see 43). Instcad of ‘[x,y]’, take either ‘Ry’ or *k(y)’. The primitive sign 
is again ‘E’, as in 43a, 

Problem 2. [Diff. IIf.] Construction of a language form for rational 
numbers by supplementing a previously given coordinate language (cf. the 
“first way” of 40d; see also the references to Russell and Waismann): 

a. A language form for posi rational numbers as pairs of natural 
numbers; on the basis of the language form of 40a, b. 

b. A language form for both positive and negative rational numbers as 
pairs of integers; on the basis of the language form of 40c. 

Problem 3. [Diff. TII.] Continuation of Problem 2 to the introduction 
of rea/ numbers as classes of rational numbers (cf. 40d; Russell and Wais- 
mann): 

a, To positive real numbcrs, in continuation of Problem 2a. 
b. To both positive and ncgative real numbers, in continuation of 

Problem 2b. 

Problem 4. [Diff.1I.] AS of the real numbers, following Hilbert (see 45). 
Problem 5. [Diff. II.] AS of the theory of magnitudes (cf. also 41): 
a. “Relativistic”. Russcll [Principles] sec. 154, Couturat [Principes] 

ch. V, sec. A. 
b. “Absolutistic”. Russell [Principles] sec. 155, Couturat, ibid. 
Problem 6. [Diff. TlI.] AS of extensive magnitudes, Couturat 

[Principes] ch. V, sec. B. (Based on Burali-Forti.) 

55b. Geometry 

Problem 7. [Diff. II.] Definitions of additional conccpts in topology 
(point set theory) on the basis of the concept of neighborhood, this in 

226 
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conncction with 46b and following Hausdorff [Grundziigc] 221 ff. or Rosscr 
[Logic] ch. 1X, scc. 8, or Bohnenblust (sce 46). 

Problem 8. [Diff. 111.) AS of ropofogy on the basis of the conccpt of 
convergent sequence of points, after Hausdorff [Grundzugc] 210, 233 fF 

Single primitive sign: ‘Lim’, We read ‘Limn(x,f)' as “point x is limit of the 
convergent scquence f of points”. Thus, the convergent sequences con- 
stitute ntem(Lim). A scquencce f of points is a function which coordinates 
points with thc natural numbers, Such a sequcncc is therefore to be 
designatcd by a functor, say ‘k’, and ‘k(n)=x" means “the nth point of the 
sequence k is x". Here ‘n’ is a natural number variable, and ‘x’ is a point 
variable; a two-sorted language is used, see 21c ) 

Problem 9. [Diff. HI.] AS of metric geometry (in point sct theory), 
following Hausdorff [Grundziige] 211 ff., 290 ff. Single primitive sign. 
‘dis’, We read ‘dis(x,y)=r' as “the distance betwcen points x and ) is r”. 
Herc ‘x’ and ‘y’ arc point variables, and ‘r’ is a real number variable; and 
again, as in Problem 8, a two-sorted language is used. 

Problem 10. [Diff. III.] Definitions for conccpts of combinatorial 
topology (e.g. in connection with L. Vietoris, “Uber den hohcren Zusam- 
menhang kompakter Raume”, Math. Ann., 97 (1927) 454 ff.; cf. also O 
Veblen, Analysis Situs, Cambridge Colloquium of Amer. Math. Soc., 1916) 
Single primitive sign: ‘Con’, We read ‘Con(x,y)' as “the points x and y 
are connected”, Rclation Con is reflexive and symmetric. By ‘Si(F)’ we 
mean “F is a simplex”; it is defined by ‘(V2 in F)< Con’. The expression 
‘SiS’ designates the class of so-called S-simpliccs. By ‘Side(F,G) we 
mean “‘F is a side of G”’; it is defined by ‘Si( F).Si(G).(F&G)'. The class of 
complexes is defined by ‘sub,(Si).C/sinduci’, Also to be defined arc: edge 
of a simplex, cdge of a complex, cycle, connexity number, etc. 

Problem 11. (Diff. 111.) AS of projective geometry, with lines as 
relations (this is based on Russell [Principles] ch. XLV). Single 
primitive sign: ‘Lin’. The sign ‘Lin’ is takcn to designate the class of 
lines; and every line is a relation between points. Thus, if Lin(R)—i.c. 
if R is an element of Lin—, then R isa linc and ‘Rxy’ says “x and y are two 
points on line R”. Thereupon the class Po of points can be defincd by 
‘sm (mem Lin)’. 

Problem 12. [Diff. II.] AS of projective geometry without infinitely 
distant points, i.c. with open lincs (such geomctry Russell called ‘‘descrip- 
tive gcometry”). (See O. Veblen, “A system of axioms for geometry”, 
Trans. Amer. Math. Soc., 5 (1904) 343-384. See also the presentation in 
Couturat [Principes] ch. V1, sec. C.) Single primitive sign: ‘Ber’. We 
read *Ber(x,y,z)’ as “the point y lies bctween the points x and z”. 

Problem 13. [Diff II.] AS of projective geometry without infinitely 
distant points. (Following Russell [Principles] ch. XLVI, whose basis was 
the system given by Vailati, “Sui principii fondamentali della geometria 
della retta, Riv. Mat., 2 (1892) 71-75; see also Couturat [Principes] ch. V1, 
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sec. C) Single primitive sign: ‘Lin’. If R is an element of Lin, R is a 
series which ordcrs the points on a line. 
Problem 14. [Diff. 111] AS of projectite geomeny with closed lines, via 

extension of the system of Problem 12. First, define the class Bun com- 
prising all bundles of rays, a bundle of rays is a class of lincs all through 
the same point, or all parallel to each other. The clements of Bun (ie 
the bundlcs) are then taken as the elements of a complete projective gco- 
metry. The method is described in Russell [Principles] scc. 384 ff. 

Problem 15, [Diff. 111.] Extend the system of Problem 13 in the same 
way that Problem 14 extends the system of Problem 12. 

Problem 16, [Diff. IIl.] AS of metric geometry on the basis of the 
concept of notion. (Sce Pieri, “Della geometria elementare come sistema 
ipotetico deduttivo, Monografia del punto ¢ del moto”, Mem. Accad. 
Torino, 1899, and his “Sur la géometrie envisagée comme un systéme 

purement logique”, Bib/. Congrés Int. Philos., Paris, 1900, vol. 111, 367--404; 
see also the presentation in Couturat [Principcs] ch. V1, scc. D), Single 
primitive sign: ‘Mor’; if R is an clement of Mor then R is a motion, ie., a 
onc-one relation between points 

Problem 17. [Diff. 111] AS of meric geometry on the basis of the 

concept of sub-sphere (following E. V. Huntington, “A set of postulates for 
abstract geometry", Marth. Ann., 73 (1913) 522-559). Single primitive 
sign: ‘S’; S is viewed as the (transitive, irreflexive) rclation betwecn two 
spheres of which the first lies completely within the second. The class Sph 
of spheres is defined by ‘mem(S)’. Three forms of this system are possible: 

a. The spheres as point classes. The class Po of points is defincd by 
‘sm (Sph)'. We say: y lies betwecn x and z provided y belongs to cvery 
sphere containing both x and z. This definition yields the relation betwcen 
which is the primitive concept of the system treated in Problem 12, Addi- 
tional projective conccpts can therefore be defined as in Problem 12, and 
corresponding axioms formulated. The following concepts are also 
defined: cord, surface, mid-point, diamcter (of a sphcre), congruence 
(between segments with an end-point in common, between parallel seg- 
ments, betwecn segments in gencral). Thercby, the metric conccpts are 
achieved. 

b. The spheres as individuals, including point-spheres. Point-spheres are 
sphercs having no sub-spheres. Development of the system goes forward 
from herc in a way analogous to form (a) above. (This system form is the 
one devised by Huntington.) 

ce. The spheres as individuals, but without point-spheres. Points are 
defined as certain infinite scqucnccs of spheies each successively lying within 
its predecessor. (Recall 39b, the note to language form 1B.) Dcvclopment 
runs in a way analogous to form (a). 

Problem 18. [Diff. III.] AS of meric geometry based on the concept of 
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vector (the presentation in Couturat [Principes] ch VI, sec. D is based on 
the system of Peano, “Analisi della tcoria dei vettori”, Arti Accademia 
Torino, 1898: see also Russcll [Principles] sec 414). Here two forms of the 
system: 

a. The single primitive sign is a predicate: ‘Prd’ We read ‘Prd(r,[1,K)’ 
as “(The rcal number) » is the inner product of vectors H and K” 
The class Ve of vectors is defined by ‘mem (Prd) cre a vector is a 
onc-one relation betwecn points; the class Po of points is defined by 
‘sm (mem*Ve)’. 

b. The single primitive sign is a fiuncror* ‘prd’; ‘prd(k,,k)’ is of the same 
type as the real number expressions, and designates the inncr product of 
k, and kz when these last are vectors. The class Ve of vectors is defincd as 
the class of those functions k for which prd(k,k) is a real number, Here 
vectors arc designatcd by functors; if k is a vector, ‘k(x)=y’ says that 
vector k runs from point x to point y. 

Problem 19. [Diff. 11I.] AS of metric geometry in the fashion of 
Hilbert, Foundations of geometry. This system employs scven primitive 
concepts: three classes—of points, of lines, and of plancs; and four relations 
—of incidence (“lies upon”), of betwecnness, of scgment-congrucnce, and 
of angle-congruence. Various versions are possible; see e.g O. Helmer 
(loc. cit, in 47), 

Problem 20. [Diff. I1I.] AS of two-dimensional Clifford geometry, 
following Russell [Principles} sec, 415. (See also W. Killing, Einfithrung in 
die Grundlagen der Geometrie, vol. | (1893) ch. 1V.) What is in view here is 
the geometry of a two-dimensional space analogous to thc Clifford surface, 
ie, a space having curvature 0 cverywhere, but having a finite area, There 
are two primitive signs: ‘Dir’ and ‘Sma’. The sentence ‘Dir(H)’ is read 
“11 is a direction”; these directions are symmetric irrcficxive relations 
between points. The sentence ‘Sma(#/,K)’ is read “The distance H is 
smaller than the distance K”. A distance is a symmetric relation between 
points. If R is a direction, the class comprising a point x and the points 
to which x bears the rclation 2 is a line through x. 

55c. Physics 

Problem 21. [Diff. IV.] AS of space-time topology. Complete the 
system of 50, where the single primitive sign is ‘S’. 

Problem 22, [Diff.1V.] AS of the theory of events, using Whitchead’s 
method of extensive abstraction (presented in The concept of nature (1920) 
ch.1V, and more completcly in An enquiry concerning the principles of 
natural knowledge (1919) Part Ill), The construction has two stages: 

a. Topology. Herc the only primitive sign is ‘P’; the sentence ‘Pxy' 
reads “The event x is a part of the cvent y”. Events are thus members of 
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the relation P. In the construction, diffcrentiatc betwecn abstractive 
scries and abstractive classcs, the lattcr being the ficlds of the formcr. The 
abstractive series represent the point-cvents (recall the note to language form 
1B in 39b), By means of these serics, according to Whitehcad, all spatial 
and temporal concepts can be cxpressed. 

b, Metric. Here a second primitive sign, ‘Cogr" for cogredience 

55d. Biology 
Problem 23. [Diff. IJI.] Continuation of the AS prescnted in 52 and 

53, following Woodger [Biology]. 
Problem 24. [Diff. I1.] _AS of the biological concepts of kinship, without 

reference to temporal rclations (in a fashion similar to 54a, but with other 
primitive signs) Use the primitive signs ‘Son’ and ‘Dau’ for son and 
daughter, 

Problem 25. [Diff. IV.] Definitions of the biological concepts of kin- 
ship that involve temporal relations, based on the system of 53, 

Problem 26. [Diff. III.] AS of the biological concepts of kinship 
involving temporal relations Slices of certain things (viz. human 
organisms, spermatozoa, ova, fertilized ova, cmbryos) arc taken as in- 
dividuals, in accordance with language form 1B prcscnted in 39b There 
arc threc primitive signs’ ‘77’, the time relation; ‘P’, the part relation; and 
‘FI’, female—all referred to slices of thc kinds named above, and such that 
both a spermatozoon and an ovum are regarded as genidentical with the 
embryo and the person which develops from their fusion. With the help 
of certain facts (viz. that the spermatozoon first is part of the father, later 
becomes part of the fertilized ovum and so of the mother; and that the un- 
fertilized ovum, the fertilized ovum and the cmbryo are parts of the mother), 
the concepts Father and Mother are defined, and thence the remaining 
biological concepts of kinship (see 54a). 

Problem 27. [Diff. 11I.] AS of the /ega/ concepts of kinship (cf. 54b), but 
involving temporal reference. Supplementation of the system of Problem 
26 by addition of two other primitive signs ‘LMar’ and ‘LChi’ for the 
concepts of Icgal marriage and of thc legal rclation of child to parcnt; here, 
in contrast to 54b, these arc rclations betwcen person-sliccs, rather than 
persons. The sentence ‘/.Mar(x,y)’ reads “‘x is a slice of a male person, » 
a simultaneous slice of a female person, and x and » arc Icgally marricd”. 
The sentence ‘LChi(x,y)’ reads “x is a legal child of y, x and y being simul- 
taneous sliccs of two persons”. The following concepts can be defined: 
legally born child, illegitimate child, legitimatized child, adopted child. 
Thus there can be formulated here definitions and axioms respecting time- 
dependent relations which are not expressible in the system of 54b, (Recall 
the remarks at the end of 54b). 
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